基于奇异系统元素的能量物体动力学建模方法

A. Verlan, Jo Sterten
{"title":"基于奇异系统元素的能量物体动力学建模方法","authors":"A. Verlan, Jo Sterten","doi":"10.32626/2308-5916.2022-23.31-36","DOIUrl":null,"url":null,"abstract":"Over the last decades there has been substantial progress on the development of theory and numerical methods for singular systems (known also as descriptor systems, semistate systems, differential alge-braic systems, generalized state-space systems, etc.). The need for such methodsarisen primarily from the increased practical interest for a more general system description which takes the intrinsic physical sys-tem model structure into account. Besides that, many physical process-es are most naturally and easily modelled as mixed systems of differen-tial and algebraic equations (DAE). As the title implies the paper de-scribes the singular systems theory application in power systems dy-namics simulation, particularly considered an alternative method for energy systems’ mathematical models formulation based on the singu-lar systems theory elements with some indicative examples illustrating feasibility and efficiency of this approach","PeriodicalId":375537,"journal":{"name":"Mathematical and computer modelling. Series: Technical sciences","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approach to Energy Objects’ Dynamics Modelling Based on Singular Systems’ Elements\",\"authors\":\"A. Verlan, Jo Sterten\",\"doi\":\"10.32626/2308-5916.2022-23.31-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decades there has been substantial progress on the development of theory and numerical methods for singular systems (known also as descriptor systems, semistate systems, differential alge-braic systems, generalized state-space systems, etc.). The need for such methodsarisen primarily from the increased practical interest for a more general system description which takes the intrinsic physical sys-tem model structure into account. Besides that, many physical process-es are most naturally and easily modelled as mixed systems of differen-tial and algebraic equations (DAE). As the title implies the paper de-scribes the singular systems theory application in power systems dy-namics simulation, particularly considered an alternative method for energy systems’ mathematical models formulation based on the singu-lar systems theory elements with some indicative examples illustrating feasibility and efficiency of this approach\",\"PeriodicalId\":375537,\"journal\":{\"name\":\"Mathematical and computer modelling. Series: Technical sciences\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and computer modelling. Series: Technical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32626/2308-5916.2022-23.31-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and computer modelling. Series: Technical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32626/2308-5916.2022-23.31-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,奇异系统(也称为广义系统、半态系统、微分代数系统、广义状态空间系统等)的理论和数值方法的发展取得了实质性的进展。对这种方法的需求主要来自于对更一般的系统描述的实际兴趣的增加,这种描述考虑了内在的物理系统模型结构。除此之外,许多物理过程最自然也最容易被建模为微分方程和代数方程的混合系统(DAE)。正如标题所示,本文描述了奇异系统理论在电力系统动力学仿真中的应用,特别考虑了一种基于奇异系统理论元素的能源系统数学模型构建的替代方法,并举例说明了该方法的可行性和有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approach to Energy Objects’ Dynamics Modelling Based on Singular Systems’ Elements
Over the last decades there has been substantial progress on the development of theory and numerical methods for singular systems (known also as descriptor systems, semistate systems, differential alge-braic systems, generalized state-space systems, etc.). The need for such methodsarisen primarily from the increased practical interest for a more general system description which takes the intrinsic physical sys-tem model structure into account. Besides that, many physical process-es are most naturally and easily modelled as mixed systems of differen-tial and algebraic equations (DAE). As the title implies the paper de-scribes the singular systems theory application in power systems dy-namics simulation, particularly considered an alternative method for energy systems’ mathematical models formulation based on the singu-lar systems theory elements with some indicative examples illustrating feasibility and efficiency of this approach
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信