边缘云协同CNN推理在物联网平台上的实现

Yuan Wang, H. Shibamura, KuanYi Ng, Koji Inoue
{"title":"边缘云协同CNN推理在物联网平台上的实现","authors":"Yuan Wang, H. Shibamura, KuanYi Ng, Koji Inoue","doi":"10.1109/MCSoC57363.2022.00060","DOIUrl":null,"url":null,"abstract":"Since the Internet of Things (IoT) has become more widely used in various industrial situations, Artificial Intelligence (AI) programs, particularly Convolutional Neural Network (CNN) applications, are projected to be implemented on edge devices to meet high-accuracy and huge industry computing needs. Offloading computing-intensive workloads to the cloud is a promising solution for compact energy-constrained edge devices, but it tends to incur significant costs in total execution latency. For flexible and fine-grained offloading, this paper aims to design and implement an edge-cloud cooperative CNN inference framework on an IoT platform by targeting TensorFlow Lite. We have confirmed the implementation's feasibility and accuracy through the verification of implementing LeNet, AlexNet, and VGGNet. Intending to perform high-performance edge-cloud AI executions on the presented IoT platform, we evaluate the performance overhead (total execution latency) of the provided implementation and identify the current bottlenecks of the target platform for enhancing it.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of Edge-cloud Cooperative CNN Inference on an IoT Platform\",\"authors\":\"Yuan Wang, H. Shibamura, KuanYi Ng, Koji Inoue\",\"doi\":\"10.1109/MCSoC57363.2022.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the Internet of Things (IoT) has become more widely used in various industrial situations, Artificial Intelligence (AI) programs, particularly Convolutional Neural Network (CNN) applications, are projected to be implemented on edge devices to meet high-accuracy and huge industry computing needs. Offloading computing-intensive workloads to the cloud is a promising solution for compact energy-constrained edge devices, but it tends to incur significant costs in total execution latency. For flexible and fine-grained offloading, this paper aims to design and implement an edge-cloud cooperative CNN inference framework on an IoT platform by targeting TensorFlow Lite. We have confirmed the implementation's feasibility and accuracy through the verification of implementing LeNet, AlexNet, and VGGNet. Intending to perform high-performance edge-cloud AI executions on the presented IoT platform, we evaluate the performance overhead (total execution latency) of the provided implementation and identify the current bottlenecks of the target platform for enhancing it.\",\"PeriodicalId\":150801,\"journal\":{\"name\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC57363.2022.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着物联网(IoT)在各种工业场景中的应用越来越广泛,人工智能(AI)程序,特别是卷积神经网络(CNN)应用,预计将在边缘设备上实施,以满足高精度和庞大的工业计算需求。将计算密集型工作负载卸载到云是紧凑型能量受限边缘设备的一个很有前途的解决方案,但它往往会在总执行延迟上产生巨大的成本。为了灵活和细粒度的卸载,本文旨在以TensorFlow Lite为目标,在物联网平台上设计和实现一个边缘云协作CNN推理框架。通过对LeNet、AlexNet和VGGNet的实现验证,证实了实现的可行性和准确性。为了在现有的物联网平台上执行高性能的边缘云AI执行,我们评估了所提供实现的性能开销(总执行延迟),并确定了目标平台当前的瓶颈,以增强它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Edge-cloud Cooperative CNN Inference on an IoT Platform
Since the Internet of Things (IoT) has become more widely used in various industrial situations, Artificial Intelligence (AI) programs, particularly Convolutional Neural Network (CNN) applications, are projected to be implemented on edge devices to meet high-accuracy and huge industry computing needs. Offloading computing-intensive workloads to the cloud is a promising solution for compact energy-constrained edge devices, but it tends to incur significant costs in total execution latency. For flexible and fine-grained offloading, this paper aims to design and implement an edge-cloud cooperative CNN inference framework on an IoT platform by targeting TensorFlow Lite. We have confirmed the implementation's feasibility and accuracy through the verification of implementing LeNet, AlexNet, and VGGNet. Intending to perform high-performance edge-cloud AI executions on the presented IoT platform, we evaluate the performance overhead (total execution latency) of the provided implementation and identify the current bottlenecks of the target platform for enhancing it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信