互斥与O(log^2 log n)平摊功

M. A. Bender, Seth Gilbert
{"title":"互斥与O(log^2 log n)平摊功","authors":"M. A. Bender, Seth Gilbert","doi":"10.1109/FOCS.2011.84","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for mutual exclusion in which each passage through the critical section costs amortized O(log^2 log n) RMRs with high probability. The algorithm operates in a standard asynchronous, local spinning, shared memory model with an oblivious adversary. It guarantees that every process enters the critical section with high probability. The algorithm achieves its efficient performance by exploiting a connection between mutual exclusion and approximate counting.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Mutual Exclusion with O(log^2 Log n) Amortized Work\",\"authors\":\"M. A. Bender, Seth Gilbert\",\"doi\":\"10.1109/FOCS.2011.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm for mutual exclusion in which each passage through the critical section costs amortized O(log^2 log n) RMRs with high probability. The algorithm operates in a standard asynchronous, local spinning, shared memory model with an oblivious adversary. It guarantees that every process enters the critical section with high probability. The algorithm achieves its efficient performance by exploiting a connection between mutual exclusion and approximate counting.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文提出了一种新的互斥算法,在该算法中,每条通过临界截面的通道都以高概率平摊O(log^2 log n)个rmr。该算法在一个标准的异步、本地旋转、共享内存模型中与一个无关的对手操作。它保证了每个过程都有高概率进入临界区域。该算法利用互斥和近似计数之间的联系来实现其高效的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutual Exclusion with O(log^2 Log n) Amortized Work
This paper presents a new algorithm for mutual exclusion in which each passage through the critical section costs amortized O(log^2 log n) RMRs with high probability. The algorithm operates in a standard asynchronous, local spinning, shared memory model with an oblivious adversary. It guarantees that every process enters the critical section with high probability. The algorithm achieves its efficient performance by exploiting a connection between mutual exclusion and approximate counting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信