A. Cahill, James H. Fife, Brian Riordan, Avijit Vajpayee, Dmytro Galochkin
{"title":"基于上下文的复杂数学反应自动评分","authors":"A. Cahill, James H. Fife, Brian Riordan, Avijit Vajpayee, Dmytro Galochkin","doi":"10.18653/v1/2020.bea-1.19","DOIUrl":null,"url":null,"abstract":"The tasks of automatically scoring either textual or algebraic responses to mathematical questions have both been well-studied, albeit separately. In this paper we propose a method for automatically scoring responses that contain both text and algebraic expressions. Our method not only achieves high agreement with human raters, but also links explicitly to the scoring rubric – essentially providing explainable models and a way to potentially provide feedback to students in the future.","PeriodicalId":363390,"journal":{"name":"Workshop on Innovative Use of NLP for Building Educational Applications","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Context-based Automated Scoring of Complex Mathematical Responses\",\"authors\":\"A. Cahill, James H. Fife, Brian Riordan, Avijit Vajpayee, Dmytro Galochkin\",\"doi\":\"10.18653/v1/2020.bea-1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tasks of automatically scoring either textual or algebraic responses to mathematical questions have both been well-studied, albeit separately. In this paper we propose a method for automatically scoring responses that contain both text and algebraic expressions. Our method not only achieves high agreement with human raters, but also links explicitly to the scoring rubric – essentially providing explainable models and a way to potentially provide feedback to students in the future.\",\"PeriodicalId\":363390,\"journal\":{\"name\":\"Workshop on Innovative Use of NLP for Building Educational Applications\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Innovative Use of NLP for Building Educational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.bea-1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Innovative Use of NLP for Building Educational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.bea-1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-based Automated Scoring of Complex Mathematical Responses
The tasks of automatically scoring either textual or algebraic responses to mathematical questions have both been well-studied, albeit separately. In this paper we propose a method for automatically scoring responses that contain both text and algebraic expressions. Our method not only achieves high agreement with human raters, but also links explicitly to the scoring rubric – essentially providing explainable models and a way to potentially provide feedback to students in the future.