非负矩阵分解的低复杂度近端高斯-牛顿算法

Kejun Huang, Xiao Fu
{"title":"非负矩阵分解的低复杂度近端高斯-牛顿算法","authors":"Kejun Huang, Xiao Fu","doi":"10.1109/GlobalSIP45357.2019.8969492","DOIUrl":null,"url":null,"abstract":"In this paper we propose a quasi-Newton algorithm for the celebrated nonnegative matrix factorization (NMF) problem. The proposed algorithm falls into the general framework of Gauss-Newton and Levenberg-Marquardt methods. However, these methods were not able to handle constraints, which is present in NMF. One of the key contributions in this paper is to apply alternating direction method of multipliers (ADMM) to obtain the iterative update from this Gauss-Newton-like algorithm. Furthermore, we carefully study the structure of the Jacobian Gramian matrix given by the Gauss-Newton updates, and designed a way of exactly inverting the matrix with complexity $\\mathcal{O}$(mnk), which is a significant reduction compared to the naive implementation of complexity $\\mathcal{O}$((m + n)3k3). The resulting algorithm, which we call NLS-ADMM, enjoys fast convergence rate brought by the quasi-Newton algorithmic framework, while maintaining low per-iteration complexity similar to that of alternating algorithms. Numerical experiments on synthetic data confirms the efficiency of our proposed algorithm.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"346 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Low-complexity Proximal Gauss-Newton Algorithm for Nonnegative Matrix Factorization\",\"authors\":\"Kejun Huang, Xiao Fu\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a quasi-Newton algorithm for the celebrated nonnegative matrix factorization (NMF) problem. The proposed algorithm falls into the general framework of Gauss-Newton and Levenberg-Marquardt methods. However, these methods were not able to handle constraints, which is present in NMF. One of the key contributions in this paper is to apply alternating direction method of multipliers (ADMM) to obtain the iterative update from this Gauss-Newton-like algorithm. Furthermore, we carefully study the structure of the Jacobian Gramian matrix given by the Gauss-Newton updates, and designed a way of exactly inverting the matrix with complexity $\\\\mathcal{O}$(mnk), which is a significant reduction compared to the naive implementation of complexity $\\\\mathcal{O}$((m + n)3k3). The resulting algorithm, which we call NLS-ADMM, enjoys fast convergence rate brought by the quasi-Newton algorithmic framework, while maintaining low per-iteration complexity similar to that of alternating algorithms. Numerical experiments on synthetic data confirms the efficiency of our proposed algorithm.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"346 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文针对著名的非负矩阵分解问题,提出了一种拟牛顿算法。该算法属于Gauss-Newton法和Levenberg-Marquardt法的一般框架。然而,这些方法不能处理NMF中存在的约束。本文的关键贡献之一是采用乘法器的交替方向法(ADMM)从这种类高斯-牛顿算法中获得迭代更新。此外,我们仔细研究了由高斯-牛顿更新给出的雅可比格拉曼矩阵的结构,并设计了一种复杂度为$\mathcal{O}$(mnk)的精确逆矩阵的方法,与复杂度为$\mathcal{O}$((m + n)3k3)的朴素实现相比有了显著的降低。所得到的算法我们称之为NLS-ADMM,它具有准牛顿算法框架带来的快速收敛速度,同时保持了与交替算法相似的低次迭代复杂度。综合数据的数值实验验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-complexity Proximal Gauss-Newton Algorithm for Nonnegative Matrix Factorization
In this paper we propose a quasi-Newton algorithm for the celebrated nonnegative matrix factorization (NMF) problem. The proposed algorithm falls into the general framework of Gauss-Newton and Levenberg-Marquardt methods. However, these methods were not able to handle constraints, which is present in NMF. One of the key contributions in this paper is to apply alternating direction method of multipliers (ADMM) to obtain the iterative update from this Gauss-Newton-like algorithm. Furthermore, we carefully study the structure of the Jacobian Gramian matrix given by the Gauss-Newton updates, and designed a way of exactly inverting the matrix with complexity $\mathcal{O}$(mnk), which is a significant reduction compared to the naive implementation of complexity $\mathcal{O}$((m + n)3k3). The resulting algorithm, which we call NLS-ADMM, enjoys fast convergence rate brought by the quasi-Newton algorithmic framework, while maintaining low per-iteration complexity similar to that of alternating algorithms. Numerical experiments on synthetic data confirms the efficiency of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信