高维超球聚类的频率敏感竞争学习

A. Banerjee, Joydeep Ghosh
{"title":"高维超球聚类的频率敏感竞争学习","authors":"A. Banerjee, Joydeep Ghosh","doi":"10.1109/IJCNN.2002.1007755","DOIUrl":null,"url":null,"abstract":"This paper derives three competitive learning mechanisms from first principles to obtain clusters of comparable sizes when both inputs and representatives are normalized. These mechanisms are very effective in achieving balanced grouping of inputs in high dimensional spaces as illustrated by experimental results on clustering two popular text data sets in 26,099 and 21,839 dimensional spaces, respectively.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Frequency sensitive competitive learning for clustering on high-dimensional hyperspheres\",\"authors\":\"A. Banerjee, Joydeep Ghosh\",\"doi\":\"10.1109/IJCNN.2002.1007755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives three competitive learning mechanisms from first principles to obtain clusters of comparable sizes when both inputs and representatives are normalized. These mechanisms are very effective in achieving balanced grouping of inputs in high dimensional spaces as illustrated by experimental results on clustering two popular text data sets in 26,099 and 21,839 dimensional spaces, respectively.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

本文从第一原理出发,导出了三种竞争学习机制,在输入和代表都归一化的情况下获得可比较大小的聚类。这些机制在实现高维空间输入的平衡分组方面非常有效,分别在26,099和21,839维空间中对两个流行的文本数据集进行聚类的实验结果说明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency sensitive competitive learning for clustering on high-dimensional hyperspheres
This paper derives three competitive learning mechanisms from first principles to obtain clusters of comparable sizes when both inputs and representatives are normalized. These mechanisms are very effective in achieving balanced grouping of inputs in high dimensional spaces as illustrated by experimental results on clustering two popular text data sets in 26,099 and 21,839 dimensional spaces, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信