电流表缺陷检测的多道目标检测方法

Guang Shen, Zhiqiang Jiao, Huajiang Yan, Qiang Wang, Chuanzi Xu, An Wen
{"title":"电流表缺陷检测的多道目标检测方法","authors":"Guang Shen, Zhiqiang Jiao, Huajiang Yan, Qiang Wang, Chuanzi Xu, An Wen","doi":"10.1109/ICSAI48974.2019.9010170","DOIUrl":null,"url":null,"abstract":"In object detection tasks, the detection accuracy and recall rate of small size are not satisfied. This paper proposes a multi-pass object detection algorithm, applied in flaw inspection of electric metering devices. The images in the training set are categorized by clustering the labeled positions. In the first detection pass, the input image is inspected by the YOLO method, and then the parts of the image are cropped according to the type of the image and detected by a second pass. Experiments show that multi-pass detection is superior to a single pass of detection, and achieves 4% higher average recall rate than single-pass detection.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-pass Object Detection Method for Flaw Inspection of Ammeters\",\"authors\":\"Guang Shen, Zhiqiang Jiao, Huajiang Yan, Qiang Wang, Chuanzi Xu, An Wen\",\"doi\":\"10.1109/ICSAI48974.2019.9010170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In object detection tasks, the detection accuracy and recall rate of small size are not satisfied. This paper proposes a multi-pass object detection algorithm, applied in flaw inspection of electric metering devices. The images in the training set are categorized by clustering the labeled positions. In the first detection pass, the input image is inspected by the YOLO method, and then the parts of the image are cropped according to the type of the image and detected by a second pass. Experiments show that multi-pass detection is superior to a single pass of detection, and achieves 4% higher average recall rate than single-pass detection.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在目标检测任务中,小尺寸的检测准确率和召回率不理想。提出了一种多道目标检测算法,并将其应用于电计量装置的缺陷检测中。通过对标记位置的聚类对训练集中的图像进行分类。在第一次检测中,输入图像通过YOLO方法进行检测,然后根据图像的类型对图像的部分进行裁剪并进行第二次检测。实验表明,多遍检测优于单遍检测,平均召回率比单遍检测高4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-pass Object Detection Method for Flaw Inspection of Ammeters
In object detection tasks, the detection accuracy and recall rate of small size are not satisfied. This paper proposes a multi-pass object detection algorithm, applied in flaw inspection of electric metering devices. The images in the training set are categorized by clustering the labeled positions. In the first detection pass, the input image is inspected by the YOLO method, and then the parts of the image are cropped according to the type of the image and detected by a second pass. Experiments show that multi-pass detection is superior to a single pass of detection, and achieves 4% higher average recall rate than single-pass detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信