Svar-Garch模型结构冲击响应的推理

S. Bruder
{"title":"Svar-Garch模型结构冲击响应的推理","authors":"S. Bruder","doi":"10.2139/ssrn.3156256","DOIUrl":null,"url":null,"abstract":"Conditional heteroskedasticity can be exploited to identify the structural vector autoregressions (SVAR) but the implications for inference on structural impulse responses have not been investigated in detail yet. We consider the conditionally heteroskedastic SVAR-GARCH model and propose a bootstrap-based inference procedure on structural impulse responses. We compare the finite-sample properties of our bootstrap method with those of two competing bootstrap methods via extensive Monte Carlo simulations. We also present a three-step estimation procedure of the parameters of the SVAR-GARCH model that promises numerical stability even in scenarios with small sample sizes and/or large dimensions.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inference for Structural Impulse Responses in Svar-Garch Models\",\"authors\":\"S. Bruder\",\"doi\":\"10.2139/ssrn.3156256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional heteroskedasticity can be exploited to identify the structural vector autoregressions (SVAR) but the implications for inference on structural impulse responses have not been investigated in detail yet. We consider the conditionally heteroskedastic SVAR-GARCH model and propose a bootstrap-based inference procedure on structural impulse responses. We compare the finite-sample properties of our bootstrap method with those of two competing bootstrap methods via extensive Monte Carlo simulations. We also present a three-step estimation procedure of the parameters of the SVAR-GARCH model that promises numerical stability even in scenarios with small sample sizes and/or large dimensions.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3156256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3156256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

条件异方差可以用来识别结构向量自回归(SVAR),但其对结构脉冲响应推理的意义尚未得到详细的研究。考虑条件异方差SVAR-GARCH模型,提出了一种基于自举的结构脉冲响应推理方法。我们通过广泛的蒙特卡罗模拟比较了我们的bootstrap方法与两种竞争的bootstrap方法的有限样本特性。我们还提出了SVAR-GARCH模型参数的三步估计程序,即使在小样本量和/或大维度的情况下也保证了数值稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference for Structural Impulse Responses in Svar-Garch Models
Conditional heteroskedasticity can be exploited to identify the structural vector autoregressions (SVAR) but the implications for inference on structural impulse responses have not been investigated in detail yet. We consider the conditionally heteroskedastic SVAR-GARCH model and propose a bootstrap-based inference procedure on structural impulse responses. We compare the finite-sample properties of our bootstrap method with those of two competing bootstrap methods via extensive Monte Carlo simulations. We also present a three-step estimation procedure of the parameters of the SVAR-GARCH model that promises numerical stability even in scenarios with small sample sizes and/or large dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信