{"title":"稀疏二值矩阵共聚类的贪婪搜索方法","authors":"F. Angiulli, Eugenio Cesario, C. Pizzuti","doi":"10.1109/ICTAI.2006.10","DOIUrl":null,"url":null,"abstract":"A co-clustering algorithm for large sparse binary data matrices, based on a greedy technique and enriched with a local search strategy to escape poor local maxima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a quality function which combines row and column means together with the size of the co-cluster. Experimental results on synthetic and real data sets show that the method is able to find significant co-clusters","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Greedy Search Approach to Co-clustering Sparse Binary Matrices\",\"authors\":\"F. Angiulli, Eugenio Cesario, C. Pizzuti\",\"doi\":\"10.1109/ICTAI.2006.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A co-clustering algorithm for large sparse binary data matrices, based on a greedy technique and enriched with a local search strategy to escape poor local maxima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a quality function which combines row and column means together with the size of the co-cluster. Experimental results on synthetic and real data sets show that the method is able to find significant co-clusters\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Greedy Search Approach to Co-clustering Sparse Binary Matrices
A co-clustering algorithm for large sparse binary data matrices, based on a greedy technique and enriched with a local search strategy to escape poor local maxima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a quality function which combines row and column means together with the size of the co-cluster. Experimental results on synthetic and real data sets show that the method is able to find significant co-clusters