稀疏二值矩阵共聚类的贪婪搜索方法

F. Angiulli, Eugenio Cesario, C. Pizzuti
{"title":"稀疏二值矩阵共聚类的贪婪搜索方法","authors":"F. Angiulli, Eugenio Cesario, C. Pizzuti","doi":"10.1109/ICTAI.2006.10","DOIUrl":null,"url":null,"abstract":"A co-clustering algorithm for large sparse binary data matrices, based on a greedy technique and enriched with a local search strategy to escape poor local maxima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a quality function which combines row and column means together with the size of the co-cluster. Experimental results on synthetic and real data sets show that the method is able to find significant co-clusters","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Greedy Search Approach to Co-clustering Sparse Binary Matrices\",\"authors\":\"F. Angiulli, Eugenio Cesario, C. Pizzuti\",\"doi\":\"10.1109/ICTAI.2006.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A co-clustering algorithm for large sparse binary data matrices, based on a greedy technique and enriched with a local search strategy to escape poor local maxima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a quality function which combines row and column means together with the size of the co-cluster. Experimental results on synthetic and real data sets show that the method is able to find significant co-clusters\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于贪心技术的大型稀疏二值数据矩阵的协同聚类算法,并加入了避免局部极值差的局部搜索策略。该算法从一个初始的随机解开始,通过逐次变换来改进将行均值和列均值结合在一起的质量函数,并结合共簇的大小来搜索局部最优解。在合成数据集和真实数据集上的实验结果表明,该方法能够找到显著的共聚类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Greedy Search Approach to Co-clustering Sparse Binary Matrices
A co-clustering algorithm for large sparse binary data matrices, based on a greedy technique and enriched with a local search strategy to escape poor local maxima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a quality function which combines row and column means together with the size of the co-cluster. Experimental results on synthetic and real data sets show that the method is able to find significant co-clusters
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信