基于卷积自编码器的工业视觉系统异常楔键检测

Ji-Yan Wu, Yatian Pang, Xiang Li, Wenju Lu
{"title":"基于卷积自编码器的工业视觉系统异常楔键检测","authors":"Ji-Yan Wu, Yatian Pang, Xiang Li, Wenju Lu","doi":"10.1109/ICECCME55909.2022.9987801","DOIUrl":null,"url":null,"abstract":"Anomaly detection using machine vision images is of utmost importance for mission-critical tasks in industrial applications. Convolutional autoencoders have been widely adopted for unsupervised defect identification on vision data. This type of deep learning vision model is able to identify the anomaly pattern of target objects/areas without incurring the heavy workload on annotation/labelling. This paper investigates the challenging problem of anomaly detection in the quality control of wedge bond production. We report the progress of using SSIM (Structural Similarity)-based autoencoder in the abnormal wedge bond detection. The main idea is to leverage the advantages of both SSIM and autoencoder on identifying the abnormal features of wedge bond. SSIM analyzes the image difference in terms of luminance, contrast and structure. An autoencoder is trained to identify such visual differences in the prediction images. We conduct extensive experiments using images captured from real wedge production line for the anomaly detection. The evaluation results demonstrate the effectiveness and accuracy of the SSIM-based autoencoder.","PeriodicalId":202568,"journal":{"name":"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Abnormal Wedge Bond Detection Using Convolutional Autoencoders in Industrial Vision Systems\",\"authors\":\"Ji-Yan Wu, Yatian Pang, Xiang Li, Wenju Lu\",\"doi\":\"10.1109/ICECCME55909.2022.9987801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection using machine vision images is of utmost importance for mission-critical tasks in industrial applications. Convolutional autoencoders have been widely adopted for unsupervised defect identification on vision data. This type of deep learning vision model is able to identify the anomaly pattern of target objects/areas without incurring the heavy workload on annotation/labelling. This paper investigates the challenging problem of anomaly detection in the quality control of wedge bond production. We report the progress of using SSIM (Structural Similarity)-based autoencoder in the abnormal wedge bond detection. The main idea is to leverage the advantages of both SSIM and autoencoder on identifying the abnormal features of wedge bond. SSIM analyzes the image difference in terms of luminance, contrast and structure. An autoencoder is trained to identify such visual differences in the prediction images. We conduct extensive experiments using images captured from real wedge production line for the anomaly detection. The evaluation results demonstrate the effectiveness and accuracy of the SSIM-based autoencoder.\",\"PeriodicalId\":202568,\"journal\":{\"name\":\"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCME55909.2022.9987801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCME55909.2022.9987801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用机器视觉图像进行异常检测对于工业应用中的关键任务至关重要。卷积自编码器已被广泛应用于视觉数据的无监督缺陷识别。这种类型的深度学习视觉模型能够识别目标对象/区域的异常模式,而不会产生大量的注释/标记工作。本文研究了楔钢生产质量控制中的异常检测问题。本文报道了基于SSIM (Structural Similarity)的自编码器在异常楔键检测中的应用进展。主要思想是利用SSIM和自编码器的优势来识别楔键的异常特征。SSIM从亮度、对比度和结构三个方面分析图像差异。训练一个自动编码器来识别预测图像中的这种视觉差异。我们利用从真实的楔形生产线捕获的图像进行了大量的实验,以进行异常检测。评价结果验证了基于ssim的自编码器的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal Wedge Bond Detection Using Convolutional Autoencoders in Industrial Vision Systems
Anomaly detection using machine vision images is of utmost importance for mission-critical tasks in industrial applications. Convolutional autoencoders have been widely adopted for unsupervised defect identification on vision data. This type of deep learning vision model is able to identify the anomaly pattern of target objects/areas without incurring the heavy workload on annotation/labelling. This paper investigates the challenging problem of anomaly detection in the quality control of wedge bond production. We report the progress of using SSIM (Structural Similarity)-based autoencoder in the abnormal wedge bond detection. The main idea is to leverage the advantages of both SSIM and autoencoder on identifying the abnormal features of wedge bond. SSIM analyzes the image difference in terms of luminance, contrast and structure. An autoencoder is trained to identify such visual differences in the prediction images. We conduct extensive experiments using images captured from real wedge production line for the anomaly detection. The evaluation results demonstrate the effectiveness and accuracy of the SSIM-based autoencoder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信