戴维斯:基于密度自适应合成视觉的虚拟人群转向

Rowan T. Hughes, Jan Ondřej, J. Dingliana
{"title":"戴维斯:基于密度自适应合成视觉的虚拟人群转向","authors":"Rowan T. Hughes, Jan Ondřej, J. Dingliana","doi":"10.1145/2822013.2822030","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.","PeriodicalId":222258,"journal":{"name":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"DAVIS: density-adaptive synthetic-vision based steering for virtual crowds\",\"authors\":\"Rowan T. Hughes, Jan Ondřej, J. Dingliana\",\"doi\":\"10.1145/2822013.2822030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.\",\"PeriodicalId\":222258,\"journal\":{\"name\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2822013.2822030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2822013.2822030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了一种新的算法来模拟人群模拟中的密度依赖行为。先前的研究表明,密度是控制行人如何适应其行为的关键因素。本文通过对真实行人数据的分析,具体考察了密度如何影响智能体如何控制它们相对于彼此的方位角度变化率。我们将现有的基于合成视觉的方法扩展到局部碰撞避免,并生成更忠实地代表真实人群如何相互避开的行人轨迹。我们的方法能够产生真实的人类行为,特别是在密集、复杂的场景中,智能体做出决策的时间是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DAVIS: density-adaptive synthetic-vision based steering for virtual crowds
We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信