{"title":"戴维斯:基于密度自适应合成视觉的虚拟人群转向","authors":"Rowan T. Hughes, Jan Ondřej, J. Dingliana","doi":"10.1145/2822013.2822030","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.","PeriodicalId":222258,"journal":{"name":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"DAVIS: density-adaptive synthetic-vision based steering for virtual crowds\",\"authors\":\"Rowan T. Hughes, Jan Ondřej, J. Dingliana\",\"doi\":\"10.1145/2822013.2822030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.\",\"PeriodicalId\":222258,\"journal\":{\"name\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2822013.2822030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2822013.2822030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DAVIS: density-adaptive synthetic-vision based steering for virtual crowds
We present a novel algorithm to model density-dependent behaviours in crowd simulation. Previous work has shown that density is a key factor in governing how pedestrians adapt their behaviour. This paper specifically examines, through analysis of real pedestrian data, how density affects how agents control their rate of change of bearing angle with respect to one another. We extend upon existing synthetic vision based approaches to local collision avoidance and generate pedestrian trajectories that more faithfully represent how real people avoid each other. Our approach is capable of producing realistic human behaviours, particularly in dense, complex scenarios where the amount of time for agents to make decisions is limited.