小波去噪在医学成像中的研究进展

A. Ouahabi
{"title":"小波去噪在医学成像中的研究进展","authors":"A. Ouahabi","doi":"10.1109/WOSSPA.2013.6602330","DOIUrl":null,"url":null,"abstract":"In this tutorial, we review recent wavelet denoising techniques for medical ultrasound and for magnetic resonance images. We evaluate their implementation via MATLAB package and discuss their performances in terms of SNR (signal-to-noise ratio) or PSNR (peak signal-to-noise ratio) and visual aspects of image quality. Image denoising using wavelet-based multiresolution analysis requires a delicate compromise between noise reduction and preserving significant image details. Hence, some subtleties associated with these denoising techniques will be explained in detail.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"A review of wavelet denoising in medical imaging\",\"authors\":\"A. Ouahabi\",\"doi\":\"10.1109/WOSSPA.2013.6602330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this tutorial, we review recent wavelet denoising techniques for medical ultrasound and for magnetic resonance images. We evaluate their implementation via MATLAB package and discuss their performances in terms of SNR (signal-to-noise ratio) or PSNR (peak signal-to-noise ratio) and visual aspects of image quality. Image denoising using wavelet-based multiresolution analysis requires a delicate compromise between noise reduction and preserving significant image details. Hence, some subtleties associated with these denoising techniques will be explained in detail.\",\"PeriodicalId\":417940,\"journal\":{\"name\":\"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOSSPA.2013.6602330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在本教程中,我们回顾了最近用于医学超声和磁共振图像的小波去噪技术。我们通过MATLAB软件包评估它们的实现,并从信噪比(SNR)或峰值信噪比(PSNR)和图像质量的视觉方面讨论它们的性能。使用基于小波的多分辨率分析图像去噪需要在降噪和保留重要图像细节之间做出微妙的妥协。因此,将详细解释与这些去噪技术相关的一些微妙之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of wavelet denoising in medical imaging
In this tutorial, we review recent wavelet denoising techniques for medical ultrasound and for magnetic resonance images. We evaluate their implementation via MATLAB package and discuss their performances in terms of SNR (signal-to-noise ratio) or PSNR (peak signal-to-noise ratio) and visual aspects of image quality. Image denoising using wavelet-based multiresolution analysis requires a delicate compromise between noise reduction and preserving significant image details. Hence, some subtleties associated with these denoising techniques will be explained in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信