{"title":"用强化学习选择最佳适应度函数","authors":"Arina Buzdalova, M. Buzdalov","doi":"10.1109/ICMLA.2011.163","DOIUrl":null,"url":null,"abstract":"This paper describes an optimization problem with one target function to be optimized and several supporting functions that can be used to speed up the optimization process. A method based on reinforcement learning is proposed for choosing a good supporting function during optimization using genetic algorithm. Results of applying this method to a model problem are shown.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Choosing Best Fitness Function with Reinforcement Learning\",\"authors\":\"Arina Buzdalova, M. Buzdalov\",\"doi\":\"10.1109/ICMLA.2011.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an optimization problem with one target function to be optimized and several supporting functions that can be used to speed up the optimization process. A method based on reinforcement learning is proposed for choosing a good supporting function during optimization using genetic algorithm. Results of applying this method to a model problem are shown.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Choosing Best Fitness Function with Reinforcement Learning
This paper describes an optimization problem with one target function to be optimized and several supporting functions that can be used to speed up the optimization process. A method based on reinforcement learning is proposed for choosing a good supporting function during optimization using genetic algorithm. Results of applying this method to a model problem are shown.