用强化学习选择最佳适应度函数

Arina Buzdalova, M. Buzdalov
{"title":"用强化学习选择最佳适应度函数","authors":"Arina Buzdalova, M. Buzdalov","doi":"10.1109/ICMLA.2011.163","DOIUrl":null,"url":null,"abstract":"This paper describes an optimization problem with one target function to be optimized and several supporting functions that can be used to speed up the optimization process. A method based on reinforcement learning is proposed for choosing a good supporting function during optimization using genetic algorithm. Results of applying this method to a model problem are shown.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Choosing Best Fitness Function with Reinforcement Learning\",\"authors\":\"Arina Buzdalova, M. Buzdalov\",\"doi\":\"10.1109/ICMLA.2011.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an optimization problem with one target function to be optimized and several supporting functions that can be used to speed up the optimization process. A method based on reinforcement learning is proposed for choosing a good supporting function during optimization using genetic algorithm. Results of applying this method to a model problem are shown.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文描述了一个优化问题,其中有一个目标函数和几个支持函数可以用来加速优化过程。提出了一种基于强化学习的遗传算法优化过程中选择良好支持函数的方法。最后给出了将该方法应用于模型问题的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choosing Best Fitness Function with Reinforcement Learning
This paper describes an optimization problem with one target function to be optimized and several supporting functions that can be used to speed up the optimization process. A method based on reinforcement learning is proposed for choosing a good supporting function during optimization using genetic algorithm. Results of applying this method to a model problem are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信