David Rybach, Stefan Hahn, C. Gollan, R. Schlüter, H. Ney
{"title":"工业大学阿拉伯语广播新闻转录的进展","authors":"David Rybach, Stefan Hahn, C. Gollan, R. Schlüter, H. Ney","doi":"10.1109/ASRU.2007.4430154","DOIUrl":null,"url":null,"abstract":"This paper describes the RWTH speech recognition system for Arabic. Several design aspects of the system, including cross-adaptation, multiple system design and combination, are analyzed. We summarize the semi-automatic lexicon generation for Arabic using a statistical approach to grapheme-to-phoneme conversion and pronunciation statistics. Furthermore, a novel ASR-based audio segmentation algorithm is presented. Finally, we discuss practical approaches for parallelized acoustic training and memory efficient lattice rescoring. Systematic results are reported on recent GALE evaluation corpora.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Advances in Arabic broadcast news transcription at RWTH\",\"authors\":\"David Rybach, Stefan Hahn, C. Gollan, R. Schlüter, H. Ney\",\"doi\":\"10.1109/ASRU.2007.4430154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the RWTH speech recognition system for Arabic. Several design aspects of the system, including cross-adaptation, multiple system design and combination, are analyzed. We summarize the semi-automatic lexicon generation for Arabic using a statistical approach to grapheme-to-phoneme conversion and pronunciation statistics. Furthermore, a novel ASR-based audio segmentation algorithm is presented. Finally, we discuss practical approaches for parallelized acoustic training and memory efficient lattice rescoring. Systematic results are reported on recent GALE evaluation corpora.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advances in Arabic broadcast news transcription at RWTH
This paper describes the RWTH speech recognition system for Arabic. Several design aspects of the system, including cross-adaptation, multiple system design and combination, are analyzed. We summarize the semi-automatic lexicon generation for Arabic using a statistical approach to grapheme-to-phoneme conversion and pronunciation statistics. Furthermore, a novel ASR-based audio segmentation algorithm is presented. Finally, we discuss practical approaches for parallelized acoustic training and memory efficient lattice rescoring. Systematic results are reported on recent GALE evaluation corpora.