Zhaodong Wang, Zhiwei Qin, Xiaocheng Tang, Jieping Ye, Hongtu Zhu
{"title":"基于知识转移的深度强化学习在在线订单调度中的应用","authors":"Zhaodong Wang, Zhiwei Qin, Xiaocheng Tang, Jieping Ye, Hongtu Zhu","doi":"10.1109/ICDM.2018.00077","DOIUrl":null,"url":null,"abstract":"Ride dispatching is a central operation task on a ride-sharing platform to continuously match drivers to trip-requesting passengers. In this work, we model the ride dispatching problem as a Markov Decision Process and propose learning solutions based on deep Q-networks with action search to optimize the dispatching policy for drivers on ride-sharing platforms. We train and evaluate dispatching agents for this challenging decision task using real-world spatio-temporal trip data from the DiDi ride-sharing platform. A large-scale dispatching system typically supports many geographical locations with diverse demand-supply settings. To increase learning adaptability and efficiency, we propose a new transfer learning method Correlated Feature Progressive Transfer, along with two existing methods, enabling knowledge transfer in both spatial and temporal spaces. Through an extensive set of experiments, we demonstrate the learning and optimization capabilities of our deep reinforcement learning algorithms. We further show that dispatching policies learned by transferring knowledge from a source city to target cities or across temporal space within the same city significantly outperform those without transfer learning.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Deep Reinforcement Learning with Knowledge Transfer for Online Rides Order Dispatching\",\"authors\":\"Zhaodong Wang, Zhiwei Qin, Xiaocheng Tang, Jieping Ye, Hongtu Zhu\",\"doi\":\"10.1109/ICDM.2018.00077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ride dispatching is a central operation task on a ride-sharing platform to continuously match drivers to trip-requesting passengers. In this work, we model the ride dispatching problem as a Markov Decision Process and propose learning solutions based on deep Q-networks with action search to optimize the dispatching policy for drivers on ride-sharing platforms. We train and evaluate dispatching agents for this challenging decision task using real-world spatio-temporal trip data from the DiDi ride-sharing platform. A large-scale dispatching system typically supports many geographical locations with diverse demand-supply settings. To increase learning adaptability and efficiency, we propose a new transfer learning method Correlated Feature Progressive Transfer, along with two existing methods, enabling knowledge transfer in both spatial and temporal spaces. Through an extensive set of experiments, we demonstrate the learning and optimization capabilities of our deep reinforcement learning algorithms. We further show that dispatching policies learned by transferring knowledge from a source city to target cities or across temporal space within the same city significantly outperform those without transfer learning.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning with Knowledge Transfer for Online Rides Order Dispatching
Ride dispatching is a central operation task on a ride-sharing platform to continuously match drivers to trip-requesting passengers. In this work, we model the ride dispatching problem as a Markov Decision Process and propose learning solutions based on deep Q-networks with action search to optimize the dispatching policy for drivers on ride-sharing platforms. We train and evaluate dispatching agents for this challenging decision task using real-world spatio-temporal trip data from the DiDi ride-sharing platform. A large-scale dispatching system typically supports many geographical locations with diverse demand-supply settings. To increase learning adaptability and efficiency, we propose a new transfer learning method Correlated Feature Progressive Transfer, along with two existing methods, enabling knowledge transfer in both spatial and temporal spaces. Through an extensive set of experiments, we demonstrate the learning and optimization capabilities of our deep reinforcement learning algorithms. We further show that dispatching policies learned by transferring knowledge from a source city to target cities or across temporal space within the same city significantly outperform those without transfer learning.