二维元胞自动机生成的时空模式与奇异函数的关系

Akane Kawaharada, Takao Namiki
{"title":"二维元胞自动机生成的时空模式与奇异函数的关系","authors":"Akane Kawaharada, Takao Namiki","doi":"10.15803/IJNC.9.2_354","DOIUrl":null,"url":null,"abstract":"In this study, we examine the relation between the spatio-temporal patterns generated by two-dimensional symmetrical elementary cellular automata and a singular function. In a previous paper, we proved that a specific cellular automaton admits a \"limit set\" (a limit on the series of spatio-temporal patterns contracted with time), and we calculated the fractal dimension of the boundary of this limit set. In this paper, we provide an overview of the previous results and a more precise analysis. Numerical simulations demonstrate that the essential fractal-like patterns created by two-dimensional cellular automata are also related to a singular function.","PeriodicalId":270166,"journal":{"name":"Int. J. Netw. Comput.","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Relation between spatio-temporal patterns generated by two-dimensional cellular automata and a singular function\",\"authors\":\"Akane Kawaharada, Takao Namiki\",\"doi\":\"10.15803/IJNC.9.2_354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we examine the relation between the spatio-temporal patterns generated by two-dimensional symmetrical elementary cellular automata and a singular function. In a previous paper, we proved that a specific cellular automaton admits a \\\"limit set\\\" (a limit on the series of spatio-temporal patterns contracted with time), and we calculated the fractal dimension of the boundary of this limit set. In this paper, we provide an overview of the previous results and a more precise analysis. Numerical simulations demonstrate that the essential fractal-like patterns created by two-dimensional cellular automata are also related to a singular function.\",\"PeriodicalId\":270166,\"journal\":{\"name\":\"Int. J. Netw. Comput.\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Netw. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15803/IJNC.9.2_354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Netw. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15803/IJNC.9.2_354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本研究中,我们研究了二维对称初等元胞自动机产生的时空模式与奇异函数之间的关系。在之前的文章中,我们证明了一个特定的元胞自动机存在“极限集”(时空模式序列随时间收缩的极限),并计算了该极限集边界的分形维数。在本文中,我们概述了以前的结果,并进行了更精确的分析。数值模拟表明,二维元胞自动机产生的基本分形模式也与奇异函数有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relation between spatio-temporal patterns generated by two-dimensional cellular automata and a singular function
In this study, we examine the relation between the spatio-temporal patterns generated by two-dimensional symmetrical elementary cellular automata and a singular function. In a previous paper, we proved that a specific cellular automaton admits a "limit set" (a limit on the series of spatio-temporal patterns contracted with time), and we calculated the fractal dimension of the boundary of this limit set. In this paper, we provide an overview of the previous results and a more precise analysis. Numerical simulations demonstrate that the essential fractal-like patterns created by two-dimensional cellular automata are also related to a singular function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信