基于基因选择方法的符号分类器在多类微阵列基因表达数据处理中的性能实验研究

Dr. Sheela T
{"title":"基于基因选择方法的符号分类器在多类微阵列基因表达数据处理中的性能实验研究","authors":"Dr. Sheela T","doi":"10.26483/ijarcs.v13i5.6914","DOIUrl":null,"url":null,"abstract":"Microarray is a useful technique for measuring expression data of thousands of genes simultaneously. The expression level of genes is known to contain the keys to address fundamental problems relating to the prevention and cure of diseases, biological evolution mechanisms and drug discovery. Previous research has demonstrated that this technology can be useful in the classification of cancers. Most proposed cancer classification methods work well only on binary class problems and not extensible to multi-class problems. This work is an attempt to classify high dimensional, multiclass Microarray Gene expression data using symbolic classifier.","PeriodicalId":287911,"journal":{"name":"International Journal of Advanced Research in Computer Science","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL STUDY ON PERFORMANCE OF SYMBOLIC CLASSIFIER WITH GENE SELECTION METHODS FOR MULTICLASS MICROARRAY GENE EXPRESSION DATA\",\"authors\":\"Dr. Sheela T\",\"doi\":\"10.26483/ijarcs.v13i5.6914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray is a useful technique for measuring expression data of thousands of genes simultaneously. The expression level of genes is known to contain the keys to address fundamental problems relating to the prevention and cure of diseases, biological evolution mechanisms and drug discovery. Previous research has demonstrated that this technology can be useful in the classification of cancers. Most proposed cancer classification methods work well only on binary class problems and not extensible to multi-class problems. This work is an attempt to classify high dimensional, multiclass Microarray Gene expression data using symbolic classifier.\",\"PeriodicalId\":287911,\"journal\":{\"name\":\"International Journal of Advanced Research in Computer Science\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26483/ijarcs.v13i5.6914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26483/ijarcs.v13i5.6914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微阵列是一种有用的技术,可以同时测量数千个基因的表达数据。众所周知,基因的表达水平包含着解决与疾病预防和治疗、生物进化机制和药物发现有关的基本问题的关键。先前的研究已经证明,这项技术在癌症分类中是有用的。大多数癌症分类方法只适用于二分类问题,而不能扩展到多分类问题。这项工作是尝试分类高维,多类微阵列基因表达数据使用符号分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXPERIMENTAL STUDY ON PERFORMANCE OF SYMBOLIC CLASSIFIER WITH GENE SELECTION METHODS FOR MULTICLASS MICROARRAY GENE EXPRESSION DATA
Microarray is a useful technique for measuring expression data of thousands of genes simultaneously. The expression level of genes is known to contain the keys to address fundamental problems relating to the prevention and cure of diseases, biological evolution mechanisms and drug discovery. Previous research has demonstrated that this technology can be useful in the classification of cancers. Most proposed cancer classification methods work well only on binary class problems and not extensible to multi-class problems. This work is an attempt to classify high dimensional, multiclass Microarray Gene expression data using symbolic classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信