参数化平流-扩散-反应问题的适当正交分解驱动的层次模型约简

Massimiliano Lupo Pasini, S. Perotto
{"title":"参数化平流-扩散-反应问题的适当正交分解驱动的层次模型约简","authors":"Massimiliano Lupo Pasini, S. Perotto","doi":"10.1553/etna_vol55s187","DOIUrl":null,"url":null,"abstract":"This work combines the Hierarchical Model (HiMod) reduction technique with a standard Proper Orthogonal Decomposition (POD) to solve parametrized partial differential equations for the modeling of advectiondiffusion-reaction phenomena in elongated domains (e.g., pipes). This combination leads to what we define as HiPOD model reduction, which merges the reliability of HiMod reduction with the computational efficiency of POD. Two HiPOD techniques are presented and assessed by an extensive numerical verification.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical model reduction driven by a proper orthogonal decomposition for parametrized advection-diffusion-reaction problems\",\"authors\":\"Massimiliano Lupo Pasini, S. Perotto\",\"doi\":\"10.1553/etna_vol55s187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work combines the Hierarchical Model (HiMod) reduction technique with a standard Proper Orthogonal Decomposition (POD) to solve parametrized partial differential equations for the modeling of advectiondiffusion-reaction phenomena in elongated domains (e.g., pipes). This combination leads to what we define as HiPOD model reduction, which merges the reliability of HiMod reduction with the computational efficiency of POD. Two HiPOD techniques are presented and assessed by an extensive numerical verification.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作结合了层次模型(HiMod)还原技术和标准的固有正交分解(POD)来求解参数化偏微分方程,用于模拟长形域(如管道)中的平流扩散反应现象。这种结合导致了我们所定义的HiPOD模型约简,它将HiMod约简的可靠性与POD的计算效率结合在一起。提出了两种HiPOD技术,并通过广泛的数值验证进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical model reduction driven by a proper orthogonal decomposition for parametrized advection-diffusion-reaction problems
This work combines the Hierarchical Model (HiMod) reduction technique with a standard Proper Orthogonal Decomposition (POD) to solve parametrized partial differential equations for the modeling of advectiondiffusion-reaction phenomena in elongated domains (e.g., pipes). This combination leads to what we define as HiPOD model reduction, which merges the reliability of HiMod reduction with the computational efficiency of POD. Two HiPOD techniques are presented and assessed by an extensive numerical verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信