基于自监督学习的多视图三维人体姿态估计

Inho Chang, Min-Gyu Park, Jaewoo Kim, J. Yoon
{"title":"基于自监督学习的多视图三维人体姿态估计","authors":"Inho Chang, Min-Gyu Park, Jaewoo Kim, J. Yoon","doi":"10.1109/ICAIIC51459.2021.9415244","DOIUrl":null,"url":null,"abstract":"Modern 3D human pose estimation builds on a deep learning network, requiring expensive amounts of training data that contain pairs of 2D and 3D pose annotations. In this paper, we propose a self-supervised 3D human pose estimation without 3D annotations. Instead, we exploit multi-view images and camera parameters to make the network learn 3D human pose based on geometric consistency. The merit of the proposed method is validated via experiments.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-View 3D Human Pose Estimation with Self-Supervised Learning\",\"authors\":\"Inho Chang, Min-Gyu Park, Jaewoo Kim, J. Yoon\",\"doi\":\"10.1109/ICAIIC51459.2021.9415244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern 3D human pose estimation builds on a deep learning network, requiring expensive amounts of training data that contain pairs of 2D and 3D pose annotations. In this paper, we propose a self-supervised 3D human pose estimation without 3D annotations. Instead, we exploit multi-view images and camera parameters to make the network learn 3D human pose based on geometric consistency. The merit of the proposed method is validated via experiments.\",\"PeriodicalId\":432977,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC51459.2021.9415244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

现代3D人体姿势估计建立在深度学习网络上,需要大量昂贵的训练数据,这些数据包含对2D和3D姿势注释。本文提出了一种不需要三维注释的自监督三维人体姿态估计方法。相反,我们利用多视图图像和相机参数使网络基于几何一致性学习3D人体姿势。通过实验验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-View 3D Human Pose Estimation with Self-Supervised Learning
Modern 3D human pose estimation builds on a deep learning network, requiring expensive amounts of training data that contain pairs of 2D and 3D pose annotations. In this paper, we propose a self-supervised 3D human pose estimation without 3D annotations. Instead, we exploit multi-view images and camera parameters to make the network learn 3D human pose based on geometric consistency. The merit of the proposed method is validated via experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信