基于多块即时学习慢特征分析的故障检测与诊断

J. Huo, Luo Yang, Xin Guo, Lian Xu
{"title":"基于多块即时学习慢特征分析的故障检测与诊断","authors":"J. Huo, Luo Yang, Xin Guo, Lian Xu","doi":"10.1109/EIECS53707.2021.9588017","DOIUrl":null,"url":null,"abstract":"The traditional fault detection method only establishes a global model and does not consider the local information of the process. At the same time, the data in the industrial process has time-varying and non-linear characteristics, limiting the prediction accuracy of fault monitoring. Therefore, fault detection and diagnosis of the method is proposed based on multi-block just-in-time-learning slow feature analysis (JITL-MBSFA). Firstly, mutual information (MI) is segmented into two sub-blocks based on normal observation data sets. Then, through just-in-time-learning (JITL) to screen the optimal data set, and based on slow feature analysis (SFA) to build a sub-model, calculate the corresponding monitoring statistics, the support vector machine (SVDD) to monitor the results of fusion. Finally, the comparative simulation experiment in the Tennessee Eastman (TE) process verified the effectiveness and superiority of the proposed method.","PeriodicalId":335255,"journal":{"name":"2021 International Conference on Electronic Information Engineering and Computer Science (EIECS)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault detection and diagnosis based on multi-block Just-In-Time-learning slow feature analysis\",\"authors\":\"J. Huo, Luo Yang, Xin Guo, Lian Xu\",\"doi\":\"10.1109/EIECS53707.2021.9588017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional fault detection method only establishes a global model and does not consider the local information of the process. At the same time, the data in the industrial process has time-varying and non-linear characteristics, limiting the prediction accuracy of fault monitoring. Therefore, fault detection and diagnosis of the method is proposed based on multi-block just-in-time-learning slow feature analysis (JITL-MBSFA). Firstly, mutual information (MI) is segmented into two sub-blocks based on normal observation data sets. Then, through just-in-time-learning (JITL) to screen the optimal data set, and based on slow feature analysis (SFA) to build a sub-model, calculate the corresponding monitoring statistics, the support vector machine (SVDD) to monitor the results of fusion. Finally, the comparative simulation experiment in the Tennessee Eastman (TE) process verified the effectiveness and superiority of the proposed method.\",\"PeriodicalId\":335255,\"journal\":{\"name\":\"2021 International Conference on Electronic Information Engineering and Computer Science (EIECS)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electronic Information Engineering and Computer Science (EIECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIECS53707.2021.9588017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Information Engineering and Computer Science (EIECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIECS53707.2021.9588017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的故障检测方法只建立全局模型,不考虑过程的局部信息。同时,工业过程中的数据具有时变和非线性的特点,限制了故障监测的预测精度。为此,提出了基于多块即时学习慢特征分析(JITL-MBSFA)的故障检测与诊断方法。首先,基于正常观测数据集,将互信息(MI)分割成两个子块;然后,通过即时学习(jit)筛选出最优数据集,并基于慢速特征分析(SFA)构建子模型,计算相应的监测统计量,将支持向量机(SVDD)对监测结果进行融合。最后,通过田纳西州伊士曼(TE)过程的对比仿真实验,验证了所提方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault detection and diagnosis based on multi-block Just-In-Time-learning slow feature analysis
The traditional fault detection method only establishes a global model and does not consider the local information of the process. At the same time, the data in the industrial process has time-varying and non-linear characteristics, limiting the prediction accuracy of fault monitoring. Therefore, fault detection and diagnosis of the method is proposed based on multi-block just-in-time-learning slow feature analysis (JITL-MBSFA). Firstly, mutual information (MI) is segmented into two sub-blocks based on normal observation data sets. Then, through just-in-time-learning (JITL) to screen the optimal data set, and based on slow feature analysis (SFA) to build a sub-model, calculate the corresponding monitoring statistics, the support vector machine (SVDD) to monitor the results of fusion. Finally, the comparative simulation experiment in the Tennessee Eastman (TE) process verified the effectiveness and superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信