用于稳定z夹尖实验的集成等离子体感知系统

A. D. Stepanov
{"title":"用于稳定z夹尖实验的集成等离子体感知系统","authors":"A. D. Stepanov","doi":"10.1109/ICOPS45751.2022.9813230","DOIUrl":null,"url":null,"abstract":"Modern plasma experiments generate copious data, but the problem of how to leverage data quantity to improve inference quality remains unsolved. The inference task can be generalized to finding an unknown vector-valued function of space and time ΠΛ ( x ,t) = [ρ, v , T, B , …]( x ,t) that carries all the relevant information about the plasma (density, velocity, etc.). Most often, ΠΛ has to be inferred from indirect diagnostic measurements like chord integrated spectroscopy, resulting in ill-posed inverse problems in the absence of regularization constraints. Most notably, these must include the laws of physics in PDE form. The proposed integrated plasma perception system uses deep neural networks to model ΠΛ ( x ,t). By comparing synthetic diagnostic signals computed from ΠΛ to actual diagnostic data, the ΠΛ network can be trained to become the solution to the inverse problem. In addition, the error-free differentiability of neural nets allows for straightforward application of PDE constraints.","PeriodicalId":175964,"journal":{"name":"2022 IEEE International Conference on Plasma Science (ICOPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards an Integrated Plasma Perception System for Stabilized Z-Pinch Experiments\",\"authors\":\"A. D. Stepanov\",\"doi\":\"10.1109/ICOPS45751.2022.9813230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern plasma experiments generate copious data, but the problem of how to leverage data quantity to improve inference quality remains unsolved. The inference task can be generalized to finding an unknown vector-valued function of space and time ΠΛ ( x ,t) = [ρ, v , T, B , …]( x ,t) that carries all the relevant information about the plasma (density, velocity, etc.). Most often, ΠΛ has to be inferred from indirect diagnostic measurements like chord integrated spectroscopy, resulting in ill-posed inverse problems in the absence of regularization constraints. Most notably, these must include the laws of physics in PDE form. The proposed integrated plasma perception system uses deep neural networks to model ΠΛ ( x ,t). By comparing synthetic diagnostic signals computed from ΠΛ to actual diagnostic data, the ΠΛ network can be trained to become the solution to the inverse problem. In addition, the error-free differentiability of neural nets allows for straightforward application of PDE constraints.\",\"PeriodicalId\":175964,\"journal\":{\"name\":\"2022 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOPS45751.2022.9813230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOPS45751.2022.9813230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代等离子体实验产生了丰富的数据,但如何利用数据量来提高推理质量的问题一直没有得到解决。推理任务可以推广到寻找一个未知的时空向量值函数ΠΛ (x,t) = [ρ, v,t, B,…](x,t),它包含了关于等离子体的所有相关信息(密度,速度等)。大多数情况下,ΠΛ必须从弦积分光谱等间接诊断测量中推断出来,在缺乏正则化约束的情况下导致不适定逆问题。最值得注意的是,这些必须包括PDE形式的物理定律。提出的集成等离子体感知系统使用深度神经网络建模ΠΛ (x,t)。通过将ΠΛ计算的合成诊断信号与实际诊断数据进行比较,可以训练ΠΛ网络成为逆问题的解。此外,神经网络的无误差可微性允许直接应用PDE约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an Integrated Plasma Perception System for Stabilized Z-Pinch Experiments
Modern plasma experiments generate copious data, but the problem of how to leverage data quantity to improve inference quality remains unsolved. The inference task can be generalized to finding an unknown vector-valued function of space and time ΠΛ ( x ,t) = [ρ, v , T, B , …]( x ,t) that carries all the relevant information about the plasma (density, velocity, etc.). Most often, ΠΛ has to be inferred from indirect diagnostic measurements like chord integrated spectroscopy, resulting in ill-posed inverse problems in the absence of regularization constraints. Most notably, these must include the laws of physics in PDE form. The proposed integrated plasma perception system uses deep neural networks to model ΠΛ ( x ,t). By comparing synthetic diagnostic signals computed from ΠΛ to actual diagnostic data, the ΠΛ network can be trained to become the solution to the inverse problem. In addition, the error-free differentiability of neural nets allows for straightforward application of PDE constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信