基于选择性小波包分解子带特征的自适应全子网+语音增强框架改进研究

Ping-Chen Wu, Pei-Fang Li, Zong-Tai Wu, J. Hung
{"title":"基于选择性小波包分解子带特征的自适应全子网+语音增强框架改进研究","authors":"Ping-Chen Wu, Pei-Fang Li, Zong-Tai Wu, J. Hung","doi":"10.1109/ICASI57738.2023.10179539","DOIUrl":null,"url":null,"abstract":"State-of-the-art speech enhancement techniques use deep neural networks to improve distorted speech signals. These networks employ an encoder-decoder framework, with the encoder extracting features from the input signal. Our research suggests using discrete wavelet transform (DWT) features as an alternative to existing methods. DWT features work well with time-domain features and improve performance in the adaptive FullSubNet+ framework. This study proposes using wavelet packet decomposition (WPD) to extract features and discarding sub-band WPD features that harm performance. Our method outperforms the original A-FSN in objective speech metrics, making it a promising speech enhancement framework.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Improving the Adaptive FullSubNet+ Speech Enhancement Framework with Selective Wavelet Packet Decomposition Sub-Band Features\",\"authors\":\"Ping-Chen Wu, Pei-Fang Li, Zong-Tai Wu, J. Hung\",\"doi\":\"10.1109/ICASI57738.2023.10179539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art speech enhancement techniques use deep neural networks to improve distorted speech signals. These networks employ an encoder-decoder framework, with the encoder extracting features from the input signal. Our research suggests using discrete wavelet transform (DWT) features as an alternative to existing methods. DWT features work well with time-domain features and improve performance in the adaptive FullSubNet+ framework. This study proposes using wavelet packet decomposition (WPD) to extract features and discarding sub-band WPD features that harm performance. Our method outperforms the original A-FSN in objective speech metrics, making it a promising speech enhancement framework.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最先进的语音增强技术使用深度神经网络来改善失真的语音信号。这些网络采用编码器-解码器框架,编码器从输入信号中提取特征。我们的研究建议使用离散小波变换(DWT)特征作为现有方法的替代方案。DWT特征可以很好地与时域特征协同工作,并在自适应FullSubNet+框架中提高性能。本研究提出使用小波包分解(WPD)提取特征,并丢弃影响性能的子带WPD特征。该方法在客观语音度量方面优于原a - fsn,是一种很有前途的语音增强框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Study of Improving the Adaptive FullSubNet+ Speech Enhancement Framework with Selective Wavelet Packet Decomposition Sub-Band Features
State-of-the-art speech enhancement techniques use deep neural networks to improve distorted speech signals. These networks employ an encoder-decoder framework, with the encoder extracting features from the input signal. Our research suggests using discrete wavelet transform (DWT) features as an alternative to existing methods. DWT features work well with time-domain features and improve performance in the adaptive FullSubNet+ framework. This study proposes using wavelet packet decomposition (WPD) to extract features and discarding sub-band WPD features that harm performance. Our method outperforms the original A-FSN in objective speech metrics, making it a promising speech enhancement framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信