Jianjun Chen, Lijun Xu, Z. Cao, Xingbin Liu, Jinhai Hu
{"title":"利用电导探头识别直井油水流动模式","authors":"Jianjun Chen, Lijun Xu, Z. Cao, Xingbin Liu, Jinhai Hu","doi":"10.1109/I2MTC.2015.7151255","DOIUrl":null,"url":null,"abstract":"In this paper, a sensor of conductance probe is proposed to detect the electrical characteristics of the oil-water flow in vertical well. Statistic and wavelet packet decomposition are employed to extract the features of the voltage response of conductance probe. A method based on principal component analysis (PCA) and support vector classification (SVC) is proposed to identify the flow patterns from the water-in-oil, transition, and oil-in-water flow patterns. Experiments were carried out in a 125 mm vertical well within the flow rate range of 10~200 m3/d and the water content range of 10~90% in Daqing Oilfield, China. Experimental results reveal that the optimal identification accuracy of training set is obtained as 100%, and that of testing set is achieved as 96.25%. Corresponding quantity of of principal component is 7, and cross validation accuracy is 95%. Consequently, the proposed method is feasible and effective to identify the flow patterns of oil-water flow using conductance probe sensor in vertical well.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of oil-water flow patterns using conductance probe in vertical well\",\"authors\":\"Jianjun Chen, Lijun Xu, Z. Cao, Xingbin Liu, Jinhai Hu\",\"doi\":\"10.1109/I2MTC.2015.7151255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sensor of conductance probe is proposed to detect the electrical characteristics of the oil-water flow in vertical well. Statistic and wavelet packet decomposition are employed to extract the features of the voltage response of conductance probe. A method based on principal component analysis (PCA) and support vector classification (SVC) is proposed to identify the flow patterns from the water-in-oil, transition, and oil-in-water flow patterns. Experiments were carried out in a 125 mm vertical well within the flow rate range of 10~200 m3/d and the water content range of 10~90% in Daqing Oilfield, China. Experimental results reveal that the optimal identification accuracy of training set is obtained as 100%, and that of testing set is achieved as 96.25%. Corresponding quantity of of principal component is 7, and cross validation accuracy is 95%. Consequently, the proposed method is feasible and effective to identify the flow patterns of oil-water flow using conductance probe sensor in vertical well.\",\"PeriodicalId\":424006,\"journal\":{\"name\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2015.7151255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of oil-water flow patterns using conductance probe in vertical well
In this paper, a sensor of conductance probe is proposed to detect the electrical characteristics of the oil-water flow in vertical well. Statistic and wavelet packet decomposition are employed to extract the features of the voltage response of conductance probe. A method based on principal component analysis (PCA) and support vector classification (SVC) is proposed to identify the flow patterns from the water-in-oil, transition, and oil-in-water flow patterns. Experiments were carried out in a 125 mm vertical well within the flow rate range of 10~200 m3/d and the water content range of 10~90% in Daqing Oilfield, China. Experimental results reveal that the optimal identification accuracy of training set is obtained as 100%, and that of testing set is achieved as 96.25%. Corresponding quantity of of principal component is 7, and cross validation accuracy is 95%. Consequently, the proposed method is feasible and effective to identify the flow patterns of oil-water flow using conductance probe sensor in vertical well.