对抗OLSR的控制消息操纵攻击

P. Singh, K. Kar
{"title":"对抗OLSR的控制消息操纵攻击","authors":"P. Singh, K. Kar","doi":"10.1145/3154273.3154339","DOIUrl":null,"url":null,"abstract":"In this work we utilize a Reputation Routing Model (RRM), which we developed in an earlier work, to mitigate the impact of three different control message based blackhole attacks in Optimized Link State Routing (OLSR) for Mobile Ad Hoc Networks (MANETs). A malicious node can potentially introduce three types of blackhole attacks on OLSR, namely TC-Blackhole attack, HELLO-Blackhole attack and TC-HELLO-Blackhole attack, by modifying its TC and HELLO messages with false information and disseminating them in the network in order to fake its advertisement. This results in node(s) diverting their messages toward the malicious node, therefore posing great security risks. Our solution reduces the risk posed by such bad nodes in the network and tries to isolate such links by feeding correct link state information to OLSR. We evaluate the performance of our model by emulating network scenarios on Common Open Research Emulator (CORE) for static as well as dynamic topologies. From our findings, it is observed that our model diminishes the effect of all three blackhole attacks on OLSR protocol in terms of packet delivery rates, especially at static and low mobility.","PeriodicalId":276042,"journal":{"name":"Proceedings of the 19th International Conference on Distributed Computing and Networking","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Countering Control Message Manipulation Attacks on OLSR\",\"authors\":\"P. Singh, K. Kar\",\"doi\":\"10.1145/3154273.3154339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we utilize a Reputation Routing Model (RRM), which we developed in an earlier work, to mitigate the impact of three different control message based blackhole attacks in Optimized Link State Routing (OLSR) for Mobile Ad Hoc Networks (MANETs). A malicious node can potentially introduce three types of blackhole attacks on OLSR, namely TC-Blackhole attack, HELLO-Blackhole attack and TC-HELLO-Blackhole attack, by modifying its TC and HELLO messages with false information and disseminating them in the network in order to fake its advertisement. This results in node(s) diverting their messages toward the malicious node, therefore posing great security risks. Our solution reduces the risk posed by such bad nodes in the network and tries to isolate such links by feeding correct link state information to OLSR. We evaluate the performance of our model by emulating network scenarios on Common Open Research Emulator (CORE) for static as well as dynamic topologies. From our findings, it is observed that our model diminishes the effect of all three blackhole attacks on OLSR protocol in terms of packet delivery rates, especially at static and low mobility.\",\"PeriodicalId\":276042,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Distributed Computing and Networking\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Distributed Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3154273.3154339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3154273.3154339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们利用我们在早期工作中开发的声誉路由模型(RRM)来减轻移动自组织网络(manet)优化链路状态路由(OLSR)中三种不同的基于控制消息的黑洞攻击的影响。恶意节点可以通过对自身TC和HELLO消息进行虚假修改并在网络中传播,从而伪造其广告,从而潜在地对OLSR引入三种黑洞攻击,即TC- blackhole攻击、HELLO- blackhole攻击和TC-HELLO- blackhole攻击。这将导致节点将其消息转移到恶意节点,从而带来很大的安全风险。我们的解决方案降低了网络中此类坏节点带来的风险,并尝试通过向OLSR提供正确的链路状态信息来隔离此类链路。我们通过在公共开放研究仿真器(CORE)上模拟静态和动态拓扑的网络场景来评估我们模型的性能。从我们的研究结果来看,可以观察到我们的模型在分组传输速率方面减少了所有三种黑洞攻击对OLSR协议的影响,特别是在静态和低移动性下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Countering Control Message Manipulation Attacks on OLSR
In this work we utilize a Reputation Routing Model (RRM), which we developed in an earlier work, to mitigate the impact of three different control message based blackhole attacks in Optimized Link State Routing (OLSR) for Mobile Ad Hoc Networks (MANETs). A malicious node can potentially introduce three types of blackhole attacks on OLSR, namely TC-Blackhole attack, HELLO-Blackhole attack and TC-HELLO-Blackhole attack, by modifying its TC and HELLO messages with false information and disseminating them in the network in order to fake its advertisement. This results in node(s) diverting their messages toward the malicious node, therefore posing great security risks. Our solution reduces the risk posed by such bad nodes in the network and tries to isolate such links by feeding correct link state information to OLSR. We evaluate the performance of our model by emulating network scenarios on Common Open Research Emulator (CORE) for static as well as dynamic topologies. From our findings, it is observed that our model diminishes the effect of all three blackhole attacks on OLSR protocol in terms of packet delivery rates, especially at static and low mobility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信