基于刚度的人机协作稳定性增强

S. Jujjavarapu, E. Esfahani
{"title":"基于刚度的人机协作稳定性增强","authors":"S. Jujjavarapu, E. Esfahani","doi":"10.1115/detc2019-98506","DOIUrl":null,"url":null,"abstract":"\n This paper presents the importance of endpoint stiffness and its role in improving the interaction stability of a human-robot collaborative task. A low effort collaborative task is simulated with the help of an admittance controlled robot. The performance of this robot for different levels of grasp stiffness are compared and a solution in the form of a Variable Stiffness Mechanism is provided. This mechanism provides an opportunity to modify the stiffness at the port of interaction based on two measures, an instability index in the frequency domain, and human muscle contraction in the time domain. Experimental results show an improvement in the performance and stability for the system with high stiffness vs low stiffness. Human muscle contraction provides a time instant at which the stiffness has to be modified and the instability index value provides information about the direction in which the stiffness has to be modified.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stiffness Based Stability Enhancement in Human-Robot Collaboration\",\"authors\":\"S. Jujjavarapu, E. Esfahani\",\"doi\":\"10.1115/detc2019-98506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents the importance of endpoint stiffness and its role in improving the interaction stability of a human-robot collaborative task. A low effort collaborative task is simulated with the help of an admittance controlled robot. The performance of this robot for different levels of grasp stiffness are compared and a solution in the form of a Variable Stiffness Mechanism is provided. This mechanism provides an opportunity to modify the stiffness at the port of interaction based on two measures, an instability index in the frequency domain, and human muscle contraction in the time domain. Experimental results show an improvement in the performance and stability for the system with high stiffness vs low stiffness. Human muscle contraction provides a time instant at which the stiffness has to be modified and the instability index value provides information about the direction in which the stiffness has to be modified.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了端点刚度的重要性及其在提高人机协作任务交互稳定性中的作用。利用导纳控制机器人模拟了一种低费力的协同任务。比较了该机器人在不同抓握刚度水平下的性能,提出了一种变刚度机构的解决方案。这种机制提供了一个机会来修改刚度在相互作用的端口基于两个措施,一个不稳定指数在频域,和人体肌肉收缩在时域。实验结果表明,相对于低刚度系统,高刚度系统的性能和稳定性有所提高。人体肌肉收缩提供了一个必须修改刚度的时间瞬间,不稳定性指标值提供了刚度必须修改的方向的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stiffness Based Stability Enhancement in Human-Robot Collaboration
This paper presents the importance of endpoint stiffness and its role in improving the interaction stability of a human-robot collaborative task. A low effort collaborative task is simulated with the help of an admittance controlled robot. The performance of this robot for different levels of grasp stiffness are compared and a solution in the form of a Variable Stiffness Mechanism is provided. This mechanism provides an opportunity to modify the stiffness at the port of interaction based on two measures, an instability index in the frequency domain, and human muscle contraction in the time domain. Experimental results show an improvement in the performance and stability for the system with high stiffness vs low stiffness. Human muscle contraction provides a time instant at which the stiffness has to be modified and the instability index value provides information about the direction in which the stiffness has to be modified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信