{"title":"用于PCM存储器的老化和内存请求率感知调度器","authors":"N. Aswathy, H. Kapoor","doi":"10.1109/ISQED57927.2023.10129369","DOIUrl":null,"url":null,"abstract":"Emerging non-volatile memories overcome the bottlenecks associated with traditional DRAM memories, such as low density and high energy. The high operating voltages required for such non-volatile memories make them vulnerable to Biased Temperature Instability (BTI) aging. The aging of a device can be controlled by the de-stress operation, where the stress voltage applied to the device is removed for a small duration. Performing de-stress in regular intervals helps to partially recover from age degradation. Such an interval-based de-stress can affect the service of regular requests and thus can hamper the system performance.To control the aging of PCM memories while maintaining the system performance, we propose AGRAS: age and memory request-rate aware scheduling method to schedule de-stress as well as regular requests. AGRAS schedules the de-stress operation only when the incoming request rate is not very high, thus controlling performance degradation. Additionally, it makes sure that in events of a prolonged high request rate, the de-stress gets scheduled in order to control device age degradation. The proposal helps to improve the system performance while minimizing the age degradation compared to the setup, which de-stresses at regular intervals.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AGRAS: Aging and memory request rate aware scheduler for PCM memories\",\"authors\":\"N. Aswathy, H. Kapoor\",\"doi\":\"10.1109/ISQED57927.2023.10129369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging non-volatile memories overcome the bottlenecks associated with traditional DRAM memories, such as low density and high energy. The high operating voltages required for such non-volatile memories make them vulnerable to Biased Temperature Instability (BTI) aging. The aging of a device can be controlled by the de-stress operation, where the stress voltage applied to the device is removed for a small duration. Performing de-stress in regular intervals helps to partially recover from age degradation. Such an interval-based de-stress can affect the service of regular requests and thus can hamper the system performance.To control the aging of PCM memories while maintaining the system performance, we propose AGRAS: age and memory request-rate aware scheduling method to schedule de-stress as well as regular requests. AGRAS schedules the de-stress operation only when the incoming request rate is not very high, thus controlling performance degradation. Additionally, it makes sure that in events of a prolonged high request rate, the de-stress gets scheduled in order to control device age degradation. The proposal helps to improve the system performance while minimizing the age degradation compared to the setup, which de-stresses at regular intervals.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AGRAS: Aging and memory request rate aware scheduler for PCM memories
Emerging non-volatile memories overcome the bottlenecks associated with traditional DRAM memories, such as low density and high energy. The high operating voltages required for such non-volatile memories make them vulnerable to Biased Temperature Instability (BTI) aging. The aging of a device can be controlled by the de-stress operation, where the stress voltage applied to the device is removed for a small duration. Performing de-stress in regular intervals helps to partially recover from age degradation. Such an interval-based de-stress can affect the service of regular requests and thus can hamper the system performance.To control the aging of PCM memories while maintaining the system performance, we propose AGRAS: age and memory request-rate aware scheduling method to schedule de-stress as well as regular requests. AGRAS schedules the de-stress operation only when the incoming request rate is not very high, thus controlling performance degradation. Additionally, it makes sure that in events of a prolonged high request rate, the de-stress gets scheduled in order to control device age degradation. The proposal helps to improve the system performance while minimizing the age degradation compared to the setup, which de-stresses at regular intervals.