H. Arava, H. Fang, Lulu Zhang, Jacob Hill, G. Liang
{"title":"掺杂钨碳包覆LiFePO4的电化学研究","authors":"H. Arava, H. Fang, Lulu Zhang, Jacob Hill, G. Liang","doi":"10.1109/NANO.2013.6720943","DOIUrl":null,"url":null,"abstract":"Due to its high thermal stability, low cost and high theoretical charge capacity, LiFePO4 has emerged as one of the most promising cathode materials for large-scale lithium ion batteries. In this work, we systematically investigated the effect on structure and electrochemical properties brought by W doping on Fe site of LiFePO4. LiFe1-yWyPO4 (y = 0. 0.01, 0.02, 0.03) samples with carbon coating were prepared by using solid-state reaction. The phase and structure of as prepared powders were characterized by X-ray diffraction. Cycling charge and discharge measurement at various C-rates, cyclic voltammetry and electrochemical impedance spectroscopy were employed to reveal the electrochemical properties. Results showed that carbon coating dramatically improved the capacity at fast C-rate. The sample with 2% W doping and carbon coating was observed to have the highest charge capacity of 146 mAhg-1 at 0.1C and 110 mAhg-1 at 1C.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical studies of carbon coated LiFePO4 doped with tungsten\",\"authors\":\"H. Arava, H. Fang, Lulu Zhang, Jacob Hill, G. Liang\",\"doi\":\"10.1109/NANO.2013.6720943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its high thermal stability, low cost and high theoretical charge capacity, LiFePO4 has emerged as one of the most promising cathode materials for large-scale lithium ion batteries. In this work, we systematically investigated the effect on structure and electrochemical properties brought by W doping on Fe site of LiFePO4. LiFe1-yWyPO4 (y = 0. 0.01, 0.02, 0.03) samples with carbon coating were prepared by using solid-state reaction. The phase and structure of as prepared powders were characterized by X-ray diffraction. Cycling charge and discharge measurement at various C-rates, cyclic voltammetry and electrochemical impedance spectroscopy were employed to reveal the electrochemical properties. Results showed that carbon coating dramatically improved the capacity at fast C-rate. The sample with 2% W doping and carbon coating was observed to have the highest charge capacity of 146 mAhg-1 at 0.1C and 110 mAhg-1 at 1C.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6720943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical studies of carbon coated LiFePO4 doped with tungsten
Due to its high thermal stability, low cost and high theoretical charge capacity, LiFePO4 has emerged as one of the most promising cathode materials for large-scale lithium ion batteries. In this work, we systematically investigated the effect on structure and electrochemical properties brought by W doping on Fe site of LiFePO4. LiFe1-yWyPO4 (y = 0. 0.01, 0.02, 0.03) samples with carbon coating were prepared by using solid-state reaction. The phase and structure of as prepared powders were characterized by X-ray diffraction. Cycling charge and discharge measurement at various C-rates, cyclic voltammetry and electrochemical impedance spectroscopy were employed to reveal the electrochemical properties. Results showed that carbon coating dramatically improved the capacity at fast C-rate. The sample with 2% W doping and carbon coating was observed to have the highest charge capacity of 146 mAhg-1 at 0.1C and 110 mAhg-1 at 1C.