自交局部时间方差的最优界

G. Deligiannidis, S. Utev
{"title":"自交局部时间方差的最优界","authors":"G. Deligiannidis, S. Utev","doi":"10.1155/2016/5370627","DOIUrl":null,"url":null,"abstract":"For a -valued random walk , let be its local time at the site . For , define the -fold self-intersection local time as . Also let be the corresponding quantities for the simple random walk in . Without imposing any moment conditions, we show that the variance of the self-intersection local time of any genuinely -dimensional random walk is bounded above by the corresponding quantity for the simple symmetric random walk; that is, . In particular, for any genuinely -dimensional random walk, with , we have . On the other hand, in dimensions we show that if the behaviour resembles that of simple random walk, in the sense that , then the increments of the random walk must have zero mean and finite second moment.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Bounds for the Variance of Self-Intersection Local Times\",\"authors\":\"G. Deligiannidis, S. Utev\",\"doi\":\"10.1155/2016/5370627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a -valued random walk , let be its local time at the site . For , define the -fold self-intersection local time as . Also let be the corresponding quantities for the simple random walk in . Without imposing any moment conditions, we show that the variance of the self-intersection local time of any genuinely -dimensional random walk is bounded above by the corresponding quantity for the simple symmetric random walk; that is, . In particular, for any genuinely -dimensional random walk, with , we have . On the other hand, in dimensions we show that if the behaviour resembles that of simple random walk, in the sense that , then the increments of the random walk must have zero mean and finite second moment.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/5370627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/5370627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于有值随机漫步,设其在该地点的本地时间。为,定义-折自交局部时间为。也设为简单随机游走的相应量。在不施加任何矩条件的情况下,我们证明了任意真维随机漫步的自交局部时间的方差是由简单对称随机漫步的相应量所限定的;也就是说,。特别地,对于任何真正的维随机漫步,我们有。另一方面,在维度上,我们表明,如果行为类似于简单的随机漫步,在某种意义上,那么随机漫步的增量必须具有零平均值和有限的第二矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Bounds for the Variance of Self-Intersection Local Times
For a -valued random walk , let be its local time at the site . For , define the -fold self-intersection local time as . Also let be the corresponding quantities for the simple random walk in . Without imposing any moment conditions, we show that the variance of the self-intersection local time of any genuinely -dimensional random walk is bounded above by the corresponding quantity for the simple symmetric random walk; that is, . In particular, for any genuinely -dimensional random walk, with , we have . On the other hand, in dimensions we show that if the behaviour resembles that of simple random walk, in the sense that , then the increments of the random walk must have zero mean and finite second moment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信