{"title":"具有同态和程度异质性的网络形成模型的半参数估计","authors":"Peter Tóth","doi":"10.2139/ssrn.2988698","DOIUrl":null,"url":null,"abstract":"This paper considers a semiparametric version of the network formation model of Graham (2017). The two-way fixed-effects binary choice model allows for homophily and degree heterogeneity, but unlike Graham (2017) leaves the distribution of pair-specific unobservables unspecified. Identification of the slope parameters and fixed effects follows from a novel approach that does not rely on distributional assumptions. The identification strategy suggests an estimator for the slope parameters based upon tetrads of nodes within the network. A computationally simple version of this estimator is shown to be consistent with a non-parametric convergence rate. A consistent estimator of the fixed effects is also provided. Partial identification, for the case of discrete covariate support, and an extension to nonlinear fixed effects are also considered.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Semiparametric Estimation in Network Formation Models with Homophily and Degree Heterogeneity\",\"authors\":\"Peter Tóth\",\"doi\":\"10.2139/ssrn.2988698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a semiparametric version of the network formation model of Graham (2017). The two-way fixed-effects binary choice model allows for homophily and degree heterogeneity, but unlike Graham (2017) leaves the distribution of pair-specific unobservables unspecified. Identification of the slope parameters and fixed effects follows from a novel approach that does not rely on distributional assumptions. The identification strategy suggests an estimator for the slope parameters based upon tetrads of nodes within the network. A computationally simple version of this estimator is shown to be consistent with a non-parametric convergence rate. A consistent estimator of the fixed effects is also provided. Partial identification, for the case of discrete covariate support, and an extension to nonlinear fixed effects are also considered.\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2988698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2988698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiparametric Estimation in Network Formation Models with Homophily and Degree Heterogeneity
This paper considers a semiparametric version of the network formation model of Graham (2017). The two-way fixed-effects binary choice model allows for homophily and degree heterogeneity, but unlike Graham (2017) leaves the distribution of pair-specific unobservables unspecified. Identification of the slope parameters and fixed effects follows from a novel approach that does not rely on distributional assumptions. The identification strategy suggests an estimator for the slope parameters based upon tetrads of nodes within the network. A computationally simple version of this estimator is shown to be consistent with a non-parametric convergence rate. A consistent estimator of the fixed effects is also provided. Partial identification, for the case of discrete covariate support, and an extension to nonlinear fixed effects are also considered.