{"title":"基于混合模式的超灵敏纳米孔阵列生物传感器","authors":"Q. Du, Xuelei Fu, Sun-A Song, Mo Li","doi":"10.1109/COMPEM.2018.8496489","DOIUrl":null,"url":null,"abstract":"A nanohole array based bio-sensor has been achieved numerically. The nanohole array is arranged in a hexagonal lattice and the material of the metal film is aluminum. With optimized parameters, the figure of merit of the presented nanohole array based sensor is around 169 which has surpassed the reported figure of merit of nanohole array based sensors.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Mode Based Ultrasensitive Nanohole Array Bio-Sensor\",\"authors\":\"Q. Du, Xuelei Fu, Sun-A Song, Mo Li\",\"doi\":\"10.1109/COMPEM.2018.8496489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nanohole array based bio-sensor has been achieved numerically. The nanohole array is arranged in a hexagonal lattice and the material of the metal film is aluminum. With optimized parameters, the figure of merit of the presented nanohole array based sensor is around 169 which has surpassed the reported figure of merit of nanohole array based sensors.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Mode Based Ultrasensitive Nanohole Array Bio-Sensor
A nanohole array based bio-sensor has been achieved numerically. The nanohole array is arranged in a hexagonal lattice and the material of the metal film is aluminum. With optimized parameters, the figure of merit of the presented nanohole array based sensor is around 169 which has surpassed the reported figure of merit of nanohole array based sensors.