基于资源独立聚合的联邦边缘学习中的异构性缓解

Zhao Yang, Qingshuang Sun
{"title":"基于资源独立聚合的联邦边缘学习中的异构性缓解","authors":"Zhao Yang, Qingshuang Sun","doi":"10.23919/DATE56975.2023.10137277","DOIUrl":null,"url":null,"abstract":"Heterogeneities have emerged as a critical challenge in Federated Learning (FL). In this paper, we identify the cause of FL performance degradation due to heterogeneous issues: the local communicated parameters have feature mismatches and feature representation range mismatches, resulting in ineffective global model generalization. To address it, Heterogeneous mitigating FL is proposed to improve the generalization of the global model with resource-independence aggregation. Instead of linking local model contributions to its occupied resources, we look for contributing parameters directly in each node's training results.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Heterogeneities in Federated Edge Learning with Resource- independence Aggregation\",\"authors\":\"Zhao Yang, Qingshuang Sun\",\"doi\":\"10.23919/DATE56975.2023.10137277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneities have emerged as a critical challenge in Federated Learning (FL). In this paper, we identify the cause of FL performance degradation due to heterogeneous issues: the local communicated parameters have feature mismatches and feature representation range mismatches, resulting in ineffective global model generalization. To address it, Heterogeneous mitigating FL is proposed to improve the generalization of the global model with resource-independence aggregation. Instead of linking local model contributions to its occupied resources, we look for contributing parameters directly in each node's training results.\",\"PeriodicalId\":340349,\"journal\":{\"name\":\"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE56975.2023.10137277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异构性已经成为联邦学习(FL)的一个关键挑战。在本文中,我们确定了由于异构问题导致FL性能下降的原因:局部通信参数存在特征不匹配和特征表示范围不匹配,导致全局模型泛化无效。为了解决这一问题,提出了异构缓解FL,通过资源无关聚合来提高全局模型的泛化能力。我们不是将局部模型贡献与其占用的资源联系起来,而是直接在每个节点的训练结果中寻找贡献参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating Heterogeneities in Federated Edge Learning with Resource- independence Aggregation
Heterogeneities have emerged as a critical challenge in Federated Learning (FL). In this paper, we identify the cause of FL performance degradation due to heterogeneous issues: the local communicated parameters have feature mismatches and feature representation range mismatches, resulting in ineffective global model generalization. To address it, Heterogeneous mitigating FL is proposed to improve the generalization of the global model with resource-independence aggregation. Instead of linking local model contributions to its occupied resources, we look for contributing parameters directly in each node's training results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信