基于支持向量回归和局部监测数据的短期光伏发电预测

Ayoub Fentis, L. Bahatti, Mohamed Mestari, M. Tabaa, A. Jarrou, B. Chouri
{"title":"基于支持向量回归和局部监测数据的短期光伏发电预测","authors":"Ayoub Fentis, L. Bahatti, Mohamed Mestari, M. Tabaa, A. Jarrou, B. Chouri","doi":"10.1109/IRSEC.2016.7983968","DOIUrl":null,"url":null,"abstract":"In recent years many research works have study the problem of photovoltaic power forecasting because of its importance to grid management and large-scale PV integration. In order to forecast the Photovoltaic power production in the region of Casablanca Morocco, a simple and reliable model based on Support Vector Regression (SVR) and local monitoring data is proposed in this paper. Three models based on ε-SVR, ν-SVR and LS-SVR are compared using five performance indicators, MAE, MSE, RMSE, R2 and RRMSE (%). The best model shows a good results with an RRMSE of 15.23% and a coefficient of determination R2 = 0.96%.","PeriodicalId":180557,"journal":{"name":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Short-term PV power forecasting using Support Vector Regression and local monitoring data\",\"authors\":\"Ayoub Fentis, L. Bahatti, Mohamed Mestari, M. Tabaa, A. Jarrou, B. Chouri\",\"doi\":\"10.1109/IRSEC.2016.7983968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years many research works have study the problem of photovoltaic power forecasting because of its importance to grid management and large-scale PV integration. In order to forecast the Photovoltaic power production in the region of Casablanca Morocco, a simple and reliable model based on Support Vector Regression (SVR) and local monitoring data is proposed in this paper. Three models based on ε-SVR, ν-SVR and LS-SVR are compared using five performance indicators, MAE, MSE, RMSE, R2 and RRMSE (%). The best model shows a good results with an RRMSE of 15.23% and a coefficient of determination R2 = 0.96%.\",\"PeriodicalId\":180557,\"journal\":{\"name\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2016.7983968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2016.7983968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

由于光伏发电功率预测对电网管理和大规模光伏并网的重要性,近年来许多研究工作都在研究光伏发电功率预测问题。为了对摩洛哥卡萨布兰卡地区的光伏发电进行预测,本文提出了一种基于支持向量回归(SVR)和当地监测数据的简单可靠的模型。利用MAE、MSE、RMSE、R2和RRMSE(%) 5个绩效指标,对基于ε-SVR、ν-SVR和LS-SVR的3种模型进行了比较。最佳模型结果良好,RRMSE为15.23%,决定系数R2 = 0.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term PV power forecasting using Support Vector Regression and local monitoring data
In recent years many research works have study the problem of photovoltaic power forecasting because of its importance to grid management and large-scale PV integration. In order to forecast the Photovoltaic power production in the region of Casablanca Morocco, a simple and reliable model based on Support Vector Regression (SVR) and local monitoring data is proposed in this paper. Three models based on ε-SVR, ν-SVR and LS-SVR are compared using five performance indicators, MAE, MSE, RMSE, R2 and RRMSE (%). The best model shows a good results with an RRMSE of 15.23% and a coefficient of determination R2 = 0.96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信