基于fpga的多核聚类实时图像处理算法

C. Sotiropoulou, A. Annovi, M. Beretta, P. Luciano, S. Nikolaidis, G. Volpi
{"title":"基于fpga的多核聚类实时图像处理算法","authors":"C. Sotiropoulou, A. Annovi, M. Beretta, P. Luciano, S. Nikolaidis, G. Volpi","doi":"10.1109/NSSMIC.2013.6829740","DOIUrl":null,"url":null,"abstract":"A multi-core FPGA-based 2D-clustering algorithm for real-time image processing is presented. The algorithm uses a moving window technique adjustable to the cluster size in order to minimize the FPGA resources required for cluster identification. The window size is generic and application dependent (size/shape of clusters in the input images). A key element of this algorithm is the possibility to instantiate multiple clustering cores working on different windows that can be used in parallel to increase performance exploiting more resources on the FPGA device. In addition to the offered parallelism, the algorithm is executed in a pipeline, thus allowing the cluster readout to be performed in parallel with the cluster identification and the data pre-processing. The algorithm is developed for the Fast Tracker processor for the trigger upgrade of the ATLAS experiment but is easily adjustable to other image processing applications which require real-time pixel clustering.","PeriodicalId":246351,"journal":{"name":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A multi-core FPGA-based clustering algorithm for real-time image processing\",\"authors\":\"C. Sotiropoulou, A. Annovi, M. Beretta, P. Luciano, S. Nikolaidis, G. Volpi\",\"doi\":\"10.1109/NSSMIC.2013.6829740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-core FPGA-based 2D-clustering algorithm for real-time image processing is presented. The algorithm uses a moving window technique adjustable to the cluster size in order to minimize the FPGA resources required for cluster identification. The window size is generic and application dependent (size/shape of clusters in the input images). A key element of this algorithm is the possibility to instantiate multiple clustering cores working on different windows that can be used in parallel to increase performance exploiting more resources on the FPGA device. In addition to the offered parallelism, the algorithm is executed in a pipeline, thus allowing the cluster readout to be performed in parallel with the cluster identification and the data pre-processing. The algorithm is developed for the Fast Tracker processor for the trigger upgrade of the ATLAS experiment but is easily adjustable to other image processing applications which require real-time pixel clustering.\",\"PeriodicalId\":246351,\"journal\":{\"name\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2013.6829740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2013.6829740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于多核fpga的二维聚类实时图像处理算法。该算法使用可调整的移动窗口技术,以最大限度地减少集群识别所需的FPGA资源。窗口大小是通用的,依赖于应用程序(输入图像中集群的大小/形状)。该算法的一个关键要素是可以实例化在不同窗口上工作的多个集群内核,这些内核可以并行使用,以利用FPGA设备上的更多资源来提高性能。除了提供的并行性之外,该算法还在管道中执行,从而允许集群读出与集群识别和数据预处理并行执行。该算法是为ATLAS实验的触发升级而为Fast Tracker处理器开发的,但很容易调整到需要实时像素聚类的其他图像处理应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-core FPGA-based clustering algorithm for real-time image processing
A multi-core FPGA-based 2D-clustering algorithm for real-time image processing is presented. The algorithm uses a moving window technique adjustable to the cluster size in order to minimize the FPGA resources required for cluster identification. The window size is generic and application dependent (size/shape of clusters in the input images). A key element of this algorithm is the possibility to instantiate multiple clustering cores working on different windows that can be used in parallel to increase performance exploiting more resources on the FPGA device. In addition to the offered parallelism, the algorithm is executed in a pipeline, thus allowing the cluster readout to be performed in parallel with the cluster identification and the data pre-processing. The algorithm is developed for the Fast Tracker processor for the trigger upgrade of the ATLAS experiment but is easily adjustable to other image processing applications which require real-time pixel clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信