基于骨架的装配线操作手势识别

Chao-Lung Yang, Wen-Ting Li, Shang-Che Hsu
{"title":"基于骨架的装配线操作手势识别","authors":"Chao-Lung Yang, Wen-Ting Li, Shang-Che Hsu","doi":"10.1109/ARIS50834.2020.9205781","DOIUrl":null,"url":null,"abstract":"This research aims to develop a hand gesture recognition (HGR) by combining the OpenPose and Spatial Temporal Graph Convolution Network (ST-GCN) to classify the operator’s assembly motion. By defining the hand gestures with five types of therbligs, the network model was trained to recognize the human hand gesture. Although the accuracy of recognition is 78.3% with room for improvement based on preliminary experiment results, the structure of the proposed network establishes a foundation for further improvement in future work.","PeriodicalId":423389,"journal":{"name":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeleton-based Hand Gesture Recognition for Assembly Line Operation\",\"authors\":\"Chao-Lung Yang, Wen-Ting Li, Shang-Che Hsu\",\"doi\":\"10.1109/ARIS50834.2020.9205781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop a hand gesture recognition (HGR) by combining the OpenPose and Spatial Temporal Graph Convolution Network (ST-GCN) to classify the operator’s assembly motion. By defining the hand gestures with five types of therbligs, the network model was trained to recognize the human hand gesture. Although the accuracy of recognition is 78.3% with room for improvement based on preliminary experiment results, the structure of the proposed network establishes a foundation for further improvement in future work.\",\"PeriodicalId\":423389,\"journal\":{\"name\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARIS50834.2020.9205781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARIS50834.2020.9205781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在结合OpenPose和时空图卷积网络(ST-GCN)开发一种手势识别(HGR)方法,对操作者的装配动作进行分类。通过对手势进行五种类型的定义,训练网络模型识别人类手势。虽然基于初步实验结果的识别准确率为78.3%,但该网络的结构为后续工作的进一步改进奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skeleton-based Hand Gesture Recognition for Assembly Line Operation
This research aims to develop a hand gesture recognition (HGR) by combining the OpenPose and Spatial Temporal Graph Convolution Network (ST-GCN) to classify the operator’s assembly motion. By defining the hand gestures with five types of therbligs, the network model was trained to recognize the human hand gesture. Although the accuracy of recognition is 78.3% with room for improvement based on preliminary experiment results, the structure of the proposed network establishes a foundation for further improvement in future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信