基于径向基函数网络的语音信号非线性预测

M. Birgmeier
{"title":"基于径向基函数网络的语音信号非线性预测","authors":"M. Birgmeier","doi":"10.5281/ZENODO.36355","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the capabilities of various forms of radial basis function networks as nonlinear short-term predictors for speech signals representing sustained utterances of German vowels. We use RBF and RBF-AR1 network architectures, trained using a standard algorithm or alternatively the extended Kalman filter (EKF) algorithm, and linear least squares predictors. We also look at cascaded forms of linear/nonlinear predictors. We evaluate both prediction gain and spectral flatness measure of the residual. The results indicate: The RBF-AR structure is the most powerful, EKF training yields better results than standard training for RBF networks, and a non-cascaded RBF-AR predictor produces results superior to cascaded predictors.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"26 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Nonlinear prediction of speech signals using radial basis function networks\",\"authors\":\"M. Birgmeier\",\"doi\":\"10.5281/ZENODO.36355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compare the capabilities of various forms of radial basis function networks as nonlinear short-term predictors for speech signals representing sustained utterances of German vowels. We use RBF and RBF-AR1 network architectures, trained using a standard algorithm or alternatively the extended Kalman filter (EKF) algorithm, and linear least squares predictors. We also look at cascaded forms of linear/nonlinear predictors. We evaluate both prediction gain and spectral flatness measure of the residual. The results indicate: The RBF-AR structure is the most powerful, EKF training yields better results than standard training for RBF networks, and a non-cascaded RBF-AR predictor produces results superior to cascaded predictors.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"26 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.36355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

在本文中,我们比较了各种形式的径向基函数网络作为代表德语元音持续话语的语音信号的非线性短期预测器的能力。我们使用RBF和RBF- ar1网络架构,使用标准算法或扩展卡尔曼滤波(EKF)算法和线性最小二乘预测器进行训练。我们还研究了线性/非线性预测器的级联形式。我们评估了残差的预测增益和频谱平坦度度量。结果表明:RBF- ar结构是最强大的,EKF训练比RBF网络的标准训练效果更好,非级联RBF- ar预测器的结果优于级联预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear prediction of speech signals using radial basis function networks
In this paper, we compare the capabilities of various forms of radial basis function networks as nonlinear short-term predictors for speech signals representing sustained utterances of German vowels. We use RBF and RBF-AR1 network architectures, trained using a standard algorithm or alternatively the extended Kalman filter (EKF) algorithm, and linear least squares predictors. We also look at cascaded forms of linear/nonlinear predictors. We evaluate both prediction gain and spectral flatness measure of the residual. The results indicate: The RBF-AR structure is the most powerful, EKF training yields better results than standard training for RBF networks, and a non-cascaded RBF-AR predictor produces results superior to cascaded predictors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信