非平稳椭圆Calogero-Sutherland方程的精确积分解

F. Atai, E. Langmann
{"title":"非平稳椭圆Calogero-Sutherland方程的精确积分解","authors":"F. Atai, E. Langmann","doi":"10.1093/integr/xyaa001","DOIUrl":null,"url":null,"abstract":"\n We use generalized kernel functions to construct explicit solutions by integrals of the non-stationary Schrödinger equation for the Hamiltonian of the elliptic Calogero–Sutherland model (also known as elliptic Knizhnik–Zamolodchikov–Bernard equation). Our solutions provide integral representations of elliptic generalizations of the Jack polynomials.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation\",\"authors\":\"F. Atai, E. Langmann\",\"doi\":\"10.1093/integr/xyaa001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We use generalized kernel functions to construct explicit solutions by integrals of the non-stationary Schrödinger equation for the Hamiltonian of the elliptic Calogero–Sutherland model (also known as elliptic Knizhnik–Zamolodchikov–Bernard equation). Our solutions provide integral representations of elliptic generalizations of the Jack polynomials.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/integr/xyaa001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyaa001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们利用广义核函数构造了椭圆型Calogero-Sutherland模型(也称为椭圆型Knizhnik-Zamolodchikov-Bernard方程)的哈密顿量的非平稳Schrödinger方程的显式积分解。我们的解提供了杰克多项式椭圆推广的积分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation
We use generalized kernel functions to construct explicit solutions by integrals of the non-stationary Schrödinger equation for the Hamiltonian of the elliptic Calogero–Sutherland model (also known as elliptic Knizhnik–Zamolodchikov–Bernard equation). Our solutions provide integral representations of elliptic generalizations of the Jack polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信