{"title":"非平稳椭圆Calogero-Sutherland方程的精确积分解","authors":"F. Atai, E. Langmann","doi":"10.1093/integr/xyaa001","DOIUrl":null,"url":null,"abstract":"\n We use generalized kernel functions to construct explicit solutions by integrals of the non-stationary Schrödinger equation for the Hamiltonian of the elliptic Calogero–Sutherland model (also known as elliptic Knizhnik–Zamolodchikov–Bernard equation). Our solutions provide integral representations of elliptic generalizations of the Jack polynomials.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation\",\"authors\":\"F. Atai, E. Langmann\",\"doi\":\"10.1093/integr/xyaa001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We use generalized kernel functions to construct explicit solutions by integrals of the non-stationary Schrödinger equation for the Hamiltonian of the elliptic Calogero–Sutherland model (also known as elliptic Knizhnik–Zamolodchikov–Bernard equation). Our solutions provide integral representations of elliptic generalizations of the Jack polynomials.\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/integr/xyaa001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyaa001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exact solutions by integrals of the non-stationary elliptic Calogero–Sutherland equation
We use generalized kernel functions to construct explicit solutions by integrals of the non-stationary Schrödinger equation for the Hamiltonian of the elliptic Calogero–Sutherland model (also known as elliptic Knizhnik–Zamolodchikov–Bernard equation). Our solutions provide integral representations of elliptic generalizations of the Jack polynomials.