用于综合话语和文本依赖说话人验证的恒Q倒谱处理的进一步优化

H. Delgado, M. Todisco, Md. Sahidullah, A. K. Sarkar, N. Evans, T. Kinnunen, Z. Tan
{"title":"用于综合话语和文本依赖说话人验证的恒Q倒谱处理的进一步优化","authors":"H. Delgado, M. Todisco, Md. Sahidullah, A. K. Sarkar, N. Evans, T. Kinnunen, Z. Tan","doi":"10.1109/SLT.2016.7846262","DOIUrl":null,"url":null,"abstract":"Many authentication applications involving automatic speaker verification (ASV) demand robust performance using short-duration, fixed or prompted text utterances. Text constraints not only reduce the phone-mismatch between enrolment and test utterances, which generally leads to improved performance, but also provide an ancillary level of security. This can take the form of explicit utterance verification (UV). An integrated UV + ASV system should then verify access attempts which contain not just the expected speaker, but also the expected text content. This paper presents such a system and introduces new features which are used for both UV and ASV tasks. Based upon multi-resolution, spectro-temporal analysis and when fused with more traditional parameterisations, the new features not only generally outperform Mel-frequency cepstral coefficients, but also are shown to be complementary when fusing systems at score level. Finally, the joint operation of UV and ASV greatly decreases false acceptances for unmatched text trials.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"336 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification\",\"authors\":\"H. Delgado, M. Todisco, Md. Sahidullah, A. K. Sarkar, N. Evans, T. Kinnunen, Z. Tan\",\"doi\":\"10.1109/SLT.2016.7846262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many authentication applications involving automatic speaker verification (ASV) demand robust performance using short-duration, fixed or prompted text utterances. Text constraints not only reduce the phone-mismatch between enrolment and test utterances, which generally leads to improved performance, but also provide an ancillary level of security. This can take the form of explicit utterance verification (UV). An integrated UV + ASV system should then verify access attempts which contain not just the expected speaker, but also the expected text content. This paper presents such a system and introduces new features which are used for both UV and ASV tasks. Based upon multi-resolution, spectro-temporal analysis and when fused with more traditional parameterisations, the new features not only generally outperform Mel-frequency cepstral coefficients, but also are shown to be complementary when fusing systems at score level. Finally, the joint operation of UV and ASV greatly decreases false acceptances for unmatched text trials.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"336 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

许多涉及自动说话人验证(ASV)的身份验证应用要求使用短时间、固定或提示的文本话语具有强大的性能。文本约束不仅减少了注册和测试话语之间的电话不匹配,这通常会导致性能的提高,而且还提供了辅助级别的安全性。这可以采取显式话语验证(UV)的形式。然后,集成的UV + ASV系统应该验证访问尝试,其中不仅包含预期的说话者,还包含预期的文本内容。本文介绍了这样一个系统,并介绍了用于UV和ASV任务的新功能。基于多分辨率,光谱时间分析和与更传统的参数化融合,新特征不仅通常优于mel频率倒谱系数,而且在分数水平上融合系统时显示出互补。最后,UV和ASV的联合操作大大降低了不匹配文本试验的误接受率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification
Many authentication applications involving automatic speaker verification (ASV) demand robust performance using short-duration, fixed or prompted text utterances. Text constraints not only reduce the phone-mismatch between enrolment and test utterances, which generally leads to improved performance, but also provide an ancillary level of security. This can take the form of explicit utterance verification (UV). An integrated UV + ASV system should then verify access attempts which contain not just the expected speaker, but also the expected text content. This paper presents such a system and introduces new features which are used for both UV and ASV tasks. Based upon multi-resolution, spectro-temporal analysis and when fused with more traditional parameterisations, the new features not only generally outperform Mel-frequency cepstral coefficients, but also are shown to be complementary when fusing systems at score level. Finally, the joint operation of UV and ASV greatly decreases false acceptances for unmatched text trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信