二类模糊集的不确定性测度

Hussam Hamrawi, S. Coupland
{"title":"二类模糊集的不确定性测度","authors":"Hussam Hamrawi, S. Coupland","doi":"10.1109/UKCI.2010.5625592","DOIUrl":null,"url":null,"abstract":"The Extension Principle based on alpha-cuts plays a pivotal role in many applications of type-1 fuzzy sets. We recently defined an alpha-based extension principle for type-2 fuzzy sets. In this paper we investigate the use of the alpha-extension principle to define uncertainty measures for type-2 fuzzy sets. We investigate cardinality, similarity, and subsethood for type-2 fuzzy sets and demonstrate when the alpha-plane representation can be used.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Measures of uncertainty for type-2 fuzzy sets\",\"authors\":\"Hussam Hamrawi, S. Coupland\",\"doi\":\"10.1109/UKCI.2010.5625592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Extension Principle based on alpha-cuts plays a pivotal role in many applications of type-1 fuzzy sets. We recently defined an alpha-based extension principle for type-2 fuzzy sets. In this paper we investigate the use of the alpha-extension principle to define uncertainty measures for type-2 fuzzy sets. We investigate cardinality, similarity, and subsethood for type-2 fuzzy sets and demonstrate when the alpha-plane representation can be used.\",\"PeriodicalId\":403291,\"journal\":{\"name\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2010.5625592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

基于α切的可拓原理在1型模糊集的许多应用中起着举足轻重的作用。我们最近定义了一类2型模糊集的基于α的可拓原理。本文研究了利用α -可拓原理来定义2型模糊集的不确定性测度。我们研究了2型模糊集的基数性、相似性和子集性,并证明了何时可以使用α -平面表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measures of uncertainty for type-2 fuzzy sets
The Extension Principle based on alpha-cuts plays a pivotal role in many applications of type-1 fuzzy sets. We recently defined an alpha-based extension principle for type-2 fuzzy sets. In this paper we investigate the use of the alpha-extension principle to define uncertainty measures for type-2 fuzzy sets. We investigate cardinality, similarity, and subsethood for type-2 fuzzy sets and demonstrate when the alpha-plane representation can be used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信