K. Fukushima, I. Norigoe, T. Ninomiya, M. Shoyama, Y. Harada, K. Tsukakoshi
{"title":"用于燃料电池的脉冲链直流-交流变换器的输入电流纹波减小","authors":"K. Fukushima, I. Norigoe, T. Ninomiya, M. Shoyama, Y. Harada, K. Tsukakoshi","doi":"10.1109/INTLEC.2008.4664104","DOIUrl":null,"url":null,"abstract":"This paper considers that the mechanism of input current-ripple on pulse-link DC-AC converter for fuel cells. And the reduction methods are shown. In general, fuel cells are weak about current ripple. The current-ripple damages to the fuel capacity and life span because the chemical reaction time when generates electricity is much slower than commercial frequency. Therefore, the input current-ripple reduction is essential factor in the DC-AC converter for fuel cells applications. In the conventional DC-AC converter topology, large smoothing capacitor is worked as the input current-ripple reduction. However, this large capacitor makes it difficult to reduce the size of DC-AC converter unit. Authors have proposed a novel topology called as pulse-link DC-AC converter. In this topology, a large capacitor for the smoothed DC power source is not needed because the first-stage boost converter provides boosted voltage pulse directly to PWM inverter. Instead, a series-connected LC circuit is inserted to reduce the input current-ripple. Furthermore, when duty ratio is controlled by sensing input current, input current-ripple is reduced less than 1 Amp.","PeriodicalId":431368,"journal":{"name":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Input current-ripple reduction of a pulse-link DC-AC converter for fuel cells\",\"authors\":\"K. Fukushima, I. Norigoe, T. Ninomiya, M. Shoyama, Y. Harada, K. Tsukakoshi\",\"doi\":\"10.1109/INTLEC.2008.4664104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers that the mechanism of input current-ripple on pulse-link DC-AC converter for fuel cells. And the reduction methods are shown. In general, fuel cells are weak about current ripple. The current-ripple damages to the fuel capacity and life span because the chemical reaction time when generates electricity is much slower than commercial frequency. Therefore, the input current-ripple reduction is essential factor in the DC-AC converter for fuel cells applications. In the conventional DC-AC converter topology, large smoothing capacitor is worked as the input current-ripple reduction. However, this large capacitor makes it difficult to reduce the size of DC-AC converter unit. Authors have proposed a novel topology called as pulse-link DC-AC converter. In this topology, a large capacitor for the smoothed DC power source is not needed because the first-stage boost converter provides boosted voltage pulse directly to PWM inverter. Instead, a series-connected LC circuit is inserted to reduce the input current-ripple. Furthermore, when duty ratio is controlled by sensing input current, input current-ripple is reduced less than 1 Amp.\",\"PeriodicalId\":431368,\"journal\":{\"name\":\"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2008.4664104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2008.4664104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Input current-ripple reduction of a pulse-link DC-AC converter for fuel cells
This paper considers that the mechanism of input current-ripple on pulse-link DC-AC converter for fuel cells. And the reduction methods are shown. In general, fuel cells are weak about current ripple. The current-ripple damages to the fuel capacity and life span because the chemical reaction time when generates electricity is much slower than commercial frequency. Therefore, the input current-ripple reduction is essential factor in the DC-AC converter for fuel cells applications. In the conventional DC-AC converter topology, large smoothing capacitor is worked as the input current-ripple reduction. However, this large capacitor makes it difficult to reduce the size of DC-AC converter unit. Authors have proposed a novel topology called as pulse-link DC-AC converter. In this topology, a large capacitor for the smoothed DC power source is not needed because the first-stage boost converter provides boosted voltage pulse directly to PWM inverter. Instead, a series-connected LC circuit is inserted to reduce the input current-ripple. Furthermore, when duty ratio is controlled by sensing input current, input current-ripple is reduced less than 1 Amp.