大型智能曲面动态面板激活的初步分析

N. Mazloum, O. Edfors
{"title":"大型智能曲面动态面板激活的初步分析","authors":"N. Mazloum, O. Edfors","doi":"10.1109/SiPS52927.2021.00012","DOIUrl":null,"url":null,"abstract":"Large intelligent surfaces (LIS) have the potential to be the beyond-massive-MIMO solution, even further improving spectral efficiency, coverage, reliability and other performance measures. They also open up for entirely new services, such as precise localization, environment sensing, and wireless energy transfer. By constructing larger surfaces as a grid of panels, we can activate and deactivate these panels depending on their individual contributions to an overall service-defined performance measure and thereby use as little resources as possible. In this paper, we take initial steps in this direction by analyzing how surfaces built as grids of panels, of which only a fraction are activated, compare. We present three types of results, for an example environment: i) received power gain when allowing dynamic activation over a large surface rather than a single central located panel, ii) the required number of activated antenna elements to reach a minimum received power for different panel sizes, and iii) the locations of activated surface areas.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial Analysis of Dynamic Panel Activation for Large Intelligent Surfaces\",\"authors\":\"N. Mazloum, O. Edfors\",\"doi\":\"10.1109/SiPS52927.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large intelligent surfaces (LIS) have the potential to be the beyond-massive-MIMO solution, even further improving spectral efficiency, coverage, reliability and other performance measures. They also open up for entirely new services, such as precise localization, environment sensing, and wireless energy transfer. By constructing larger surfaces as a grid of panels, we can activate and deactivate these panels depending on their individual contributions to an overall service-defined performance measure and thereby use as little resources as possible. In this paper, we take initial steps in this direction by analyzing how surfaces built as grids of panels, of which only a fraction are activated, compare. We present three types of results, for an example environment: i) received power gain when allowing dynamic activation over a large surface rather than a single central located panel, ii) the required number of activated antenna elements to reach a minimum received power for different panel sizes, and iii) the locations of activated surface areas.\",\"PeriodicalId\":103894,\"journal\":{\"name\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"278 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS52927.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型智能表面(LIS)具有超越大规模mimo解决方案的潜力,甚至可以进一步提高频谱效率、覆盖范围、可靠性和其他性能指标。它们还开辟了全新的服务,如精确定位、环境传感和无线能量传输。通过将较大的表面构建为面板网格,我们可以根据这些面板对整体服务定义性能的贡献来激活和停用这些面板,从而尽可能少地使用资源。在本文中,我们通过分析作为面板网格构建的表面(其中只有一小部分被激活)如何比较,在这个方向上迈出了初步的步骤。我们给出了三种类型的结果,例如环境:i)允许在大表面而不是单个位于中央的面板上动态激活时的接收功率增益,ii)在不同面板尺寸下达到最小接收功率所需的激活天线元件数量,以及iii)激活表面积的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Initial Analysis of Dynamic Panel Activation for Large Intelligent Surfaces
Large intelligent surfaces (LIS) have the potential to be the beyond-massive-MIMO solution, even further improving spectral efficiency, coverage, reliability and other performance measures. They also open up for entirely new services, such as precise localization, environment sensing, and wireless energy transfer. By constructing larger surfaces as a grid of panels, we can activate and deactivate these panels depending on their individual contributions to an overall service-defined performance measure and thereby use as little resources as possible. In this paper, we take initial steps in this direction by analyzing how surfaces built as grids of panels, of which only a fraction are activated, compare. We present three types of results, for an example environment: i) received power gain when allowing dynamic activation over a large surface rather than a single central located panel, ii) the required number of activated antenna elements to reach a minimum received power for different panel sizes, and iii) the locations of activated surface areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信