基于EPSO的多场景安全约束无功规划工具

H. Keko, Á. J. Duque, Vladimiro Miranda
{"title":"基于EPSO的多场景安全约束无功规划工具","authors":"H. Keko, Á. J. Duque, Vladimiro Miranda","doi":"10.1109/ISAP.2007.4441589","DOIUrl":null,"url":null,"abstract":"Evolutionary particle swarm optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from particle swarm optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Multiple Scenario Security Constrained Reactive Power Planning Tool Using EPSO\",\"authors\":\"H. Keko, Á. J. Duque, Vladimiro Miranda\",\"doi\":\"10.1109/ISAP.2007.4441589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary particle swarm optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from particle swarm optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

进化粒子群优化算法(EPSO)是一种鲁棒优化算法,属于进化方法。EPSO借鉴粒子群算法的运动规律,将其作为一种在选择下进化的重组算子。本文提出了一种利用EPSO鲁棒性的无功规划方法,该方法同时考虑了多个突发事件和多个负荷水平。对选定问题的结果进行总结,包括对结果的权衡分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multiple Scenario Security Constrained Reactive Power Planning Tool Using EPSO
Evolutionary particle swarm optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from particle swarm optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信