中文分词中重叠歧义消解的无监督训练

Mu Li, Jianfeng Gao, C. Huang, Jianfeng Li
{"title":"中文分词中重叠歧义消解的无监督训练","authors":"Mu Li, Jianfeng Gao, C. Huang, Jianfeng Li","doi":"10.3115/1119250.1119251","DOIUrl":null,"url":null,"abstract":"This paper proposes an unsupervised training approach to resolving overlapping ambiguities in Chinese word segmentation. We present an ensemble of adapted Naive Bayesian classifiers that can be trained using an unlabelled Chinese text corpus. These classifiers differ in that they use context words within windows of different sizes as features. The performance of our approach is evaluated on a manually annotated test set. Experimental results show that the proposed approach achieves an accuracy of 94.3%, rivaling the rule-based and supervised training methods.","PeriodicalId":403123,"journal":{"name":"Workshop on Chinese Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation\",\"authors\":\"Mu Li, Jianfeng Gao, C. Huang, Jianfeng Li\",\"doi\":\"10.3115/1119250.1119251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an unsupervised training approach to resolving overlapping ambiguities in Chinese word segmentation. We present an ensemble of adapted Naive Bayesian classifiers that can be trained using an unlabelled Chinese text corpus. These classifiers differ in that they use context words within windows of different sizes as features. The performance of our approach is evaluated on a manually annotated test set. Experimental results show that the proposed approach achieves an accuracy of 94.3%, rivaling the rule-based and supervised training methods.\",\"PeriodicalId\":403123,\"journal\":{\"name\":\"Workshop on Chinese Language Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Chinese Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1119250.1119251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Chinese Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119250.1119251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文提出了一种无监督训练方法来解决汉语分词中的重叠歧义问题。我们提出了一个自适应朴素贝叶斯分类器的集合,可以使用未标记的中文文本语料库进行训练。这些分类器的不同之处在于它们使用不同大小窗口内的上下文词作为特征。我们的方法的性能在一个手动标注的测试集上进行了评估。实验结果表明,该方法的准确率为94.3%,与基于规则和监督的训练方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Training for Overlapping Ambiguity Resolution in Chinese Word Segmentation
This paper proposes an unsupervised training approach to resolving overlapping ambiguities in Chinese word segmentation. We present an ensemble of adapted Naive Bayesian classifiers that can be trained using an unlabelled Chinese text corpus. These classifiers differ in that they use context words within windows of different sizes as features. The performance of our approach is evaluated on a manually annotated test set. Experimental results show that the proposed approach achieves an accuracy of 94.3%, rivaling the rule-based and supervised training methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信