密集连接的自动编码器用于图像压缩

Zebang Song, S. Kamata
{"title":"密集连接的自动编码器用于图像压缩","authors":"Zebang Song, S. Kamata","doi":"10.1145/3313950.3313965","DOIUrl":null,"url":null,"abstract":"Image compression, which is a type of data compression applied to digital images, has been a fundamental research topic for many decades. Recent image techniques produce very large amounts of data, which may make it prohibitive to storage and communications of image data without the use of compression. However, the traditional compression methods, such as JPEG, may introduce the compression artefact problems. Recently, deep learning has achieved great success in many computer vision tasks and is gradually being used in image compression. To solve the compression atrefact problem, in this paper, we present a lossy image compression architecture, which utilizes the advantages of the existing deep learning methods to achieve a high coding efficiency. We design a densely connected autoencoder structure for lossy image compression. Firstly, we design a densely autoencoder structure to get richer feature information from image which can be helpful for compression. Secondly, we design a U-net like network to decrease the distortion caused by compression. Finally, an improved binarizer is adopted to quantize the output of encoder. In low bit rate image compression, experiments show that our method significantly outperforms JPEG and JPEG2000 and can produce a better visual result with sharp edges, rich textures, and fewer artifacts.","PeriodicalId":149627,"journal":{"name":"International Conference on Image and Graphics Processing","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Densely connected AutoEncoders for image compression\",\"authors\":\"Zebang Song, S. Kamata\",\"doi\":\"10.1145/3313950.3313965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image compression, which is a type of data compression applied to digital images, has been a fundamental research topic for many decades. Recent image techniques produce very large amounts of data, which may make it prohibitive to storage and communications of image data without the use of compression. However, the traditional compression methods, such as JPEG, may introduce the compression artefact problems. Recently, deep learning has achieved great success in many computer vision tasks and is gradually being used in image compression. To solve the compression atrefact problem, in this paper, we present a lossy image compression architecture, which utilizes the advantages of the existing deep learning methods to achieve a high coding efficiency. We design a densely connected autoencoder structure for lossy image compression. Firstly, we design a densely autoencoder structure to get richer feature information from image which can be helpful for compression. Secondly, we design a U-net like network to decrease the distortion caused by compression. Finally, an improved binarizer is adopted to quantize the output of encoder. In low bit rate image compression, experiments show that our method significantly outperforms JPEG and JPEG2000 and can produce a better visual result with sharp edges, rich textures, and fewer artifacts.\",\"PeriodicalId\":149627,\"journal\":{\"name\":\"International Conference on Image and Graphics Processing\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Image and Graphics Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3313950.3313965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image and Graphics Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313950.3313965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Densely connected AutoEncoders for image compression
Image compression, which is a type of data compression applied to digital images, has been a fundamental research topic for many decades. Recent image techniques produce very large amounts of data, which may make it prohibitive to storage and communications of image data without the use of compression. However, the traditional compression methods, such as JPEG, may introduce the compression artefact problems. Recently, deep learning has achieved great success in many computer vision tasks and is gradually being used in image compression. To solve the compression atrefact problem, in this paper, we present a lossy image compression architecture, which utilizes the advantages of the existing deep learning methods to achieve a high coding efficiency. We design a densely connected autoencoder structure for lossy image compression. Firstly, we design a densely autoencoder structure to get richer feature information from image which can be helpful for compression. Secondly, we design a U-net like network to decrease the distortion caused by compression. Finally, an improved binarizer is adopted to quantize the output of encoder. In low bit rate image compression, experiments show that our method significantly outperforms JPEG and JPEG2000 and can produce a better visual result with sharp edges, rich textures, and fewer artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信