{"title":"基于堆栈的遗传规划","authors":"Tim Perkis","doi":"10.1109/ICEC.1994.350025","DOIUrl":null,"url":null,"abstract":"Some recent work in the field of genetic programming (GP) has been concerned with finding optimum representations for evolvable and efficient computer programs. This paper describes a new GP system in which target programs run on a stack-based virtual machine. The system is shown to have certain advantages in terms of efficiency and simplicity of implementation, and for certain problems, its effectiveness is shown to be comparable or superior to current methods.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":"{\"title\":\"Stack-based genetic programming\",\"authors\":\"Tim Perkis\",\"doi\":\"10.1109/ICEC.1994.350025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some recent work in the field of genetic programming (GP) has been concerned with finding optimum representations for evolvable and efficient computer programs. This paper describes a new GP system in which target programs run on a stack-based virtual machine. The system is shown to have certain advantages in terms of efficiency and simplicity of implementation, and for certain problems, its effectiveness is shown to be comparable or superior to current methods.<<ETX>>\",\"PeriodicalId\":393865,\"journal\":{\"name\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"165\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1994.350025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.350025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some recent work in the field of genetic programming (GP) has been concerned with finding optimum representations for evolvable and efficient computer programs. This paper describes a new GP system in which target programs run on a stack-based virtual machine. The system is shown to have certain advantages in terms of efficiency and simplicity of implementation, and for certain problems, its effectiveness is shown to be comparable or superior to current methods.<>