基于堆栈的遗传规划

Tim Perkis
{"title":"基于堆栈的遗传规划","authors":"Tim Perkis","doi":"10.1109/ICEC.1994.350025","DOIUrl":null,"url":null,"abstract":"Some recent work in the field of genetic programming (GP) has been concerned with finding optimum representations for evolvable and efficient computer programs. This paper describes a new GP system in which target programs run on a stack-based virtual machine. The system is shown to have certain advantages in terms of efficiency and simplicity of implementation, and for certain problems, its effectiveness is shown to be comparable or superior to current methods.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":"{\"title\":\"Stack-based genetic programming\",\"authors\":\"Tim Perkis\",\"doi\":\"10.1109/ICEC.1994.350025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some recent work in the field of genetic programming (GP) has been concerned with finding optimum representations for evolvable and efficient computer programs. This paper describes a new GP system in which target programs run on a stack-based virtual machine. The system is shown to have certain advantages in terms of efficiency and simplicity of implementation, and for certain problems, its effectiveness is shown to be comparable or superior to current methods.<<ETX>>\",\"PeriodicalId\":393865,\"journal\":{\"name\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"165\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1994.350025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.350025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

摘要

遗传规划(GP)领域最近的一些工作一直关注于寻找可进化和高效的计算机程序的最佳表示。本文描述了一种新的GP系统,其中目标程序运行在基于堆栈的虚拟机上。该系统在效率和实现的简单性方面具有一定的优势,并且在某些问题上,其有效性显示与现有方法相当或优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stack-based genetic programming
Some recent work in the field of genetic programming (GP) has been concerned with finding optimum representations for evolvable and efficient computer programs. This paper describes a new GP system in which target programs run on a stack-based virtual machine. The system is shown to have certain advantages in terms of efficiency and simplicity of implementation, and for certain problems, its effectiveness is shown to be comparable or superior to current methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信