Onur Acun, Ayhan Küçükmanísa, Yakup Genç, O. Urhan
{"title":"基于回归输出CNN的可行驶道路区域检测","authors":"Onur Acun, Ayhan Küçükmanísa, Yakup Genç, O. Urhan","doi":"10.1109/SIU49456.2020.9302116","DOIUrl":null,"url":null,"abstract":"Nowadays, many methods are developed on autonomous vehicles and driver assistance systems to prevent traffic accidents and support drivers. In this work, a drivable area detection method based on CNN and regression is proposed. In the proposed method, Cityscapes dataset, which is open to sharing on the Internet is used as dataset. The images in the dataset are cut into slices to obtain new input images. With those images, a CNN based deep learning network is trained. By applying linear regression on the characteristics of the output of the network, the road boundary points in the relevant slice are tried to be determined. Experimental results have shown that the developed method has real-time operating performance and the results can be improved.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drivable Road Area Detection with Regression Output CNN\",\"authors\":\"Onur Acun, Ayhan Küçükmanísa, Yakup Genç, O. Urhan\",\"doi\":\"10.1109/SIU49456.2020.9302116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, many methods are developed on autonomous vehicles and driver assistance systems to prevent traffic accidents and support drivers. In this work, a drivable area detection method based on CNN and regression is proposed. In the proposed method, Cityscapes dataset, which is open to sharing on the Internet is used as dataset. The images in the dataset are cut into slices to obtain new input images. With those images, a CNN based deep learning network is trained. By applying linear regression on the characteristics of the output of the network, the road boundary points in the relevant slice are tried to be determined. Experimental results have shown that the developed method has real-time operating performance and the results can be improved.\",\"PeriodicalId\":312627,\"journal\":{\"name\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU49456.2020.9302116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Drivable Road Area Detection with Regression Output CNN
Nowadays, many methods are developed on autonomous vehicles and driver assistance systems to prevent traffic accidents and support drivers. In this work, a drivable area detection method based on CNN and regression is proposed. In the proposed method, Cityscapes dataset, which is open to sharing on the Internet is used as dataset. The images in the dataset are cut into slices to obtain new input images. With those images, a CNN based deep learning network is trained. By applying linear regression on the characteristics of the output of the network, the road boundary points in the relevant slice are tried to be determined. Experimental results have shown that the developed method has real-time operating performance and the results can be improved.