关于期权价格估计的数值说明

S. Cuomo, R. Campagna, V. D. Somma, G. Severino
{"title":"关于期权价格估计的数值说明","authors":"S. Cuomo, R. Campagna, V. D. Somma, G. Severino","doi":"10.1109/SITIS.2016.123","DOIUrl":null,"url":null,"abstract":"The computation of the European options price in a Black-Scholes market, characterized by the presence of no arbitrage condition, is an important applicative problem. In this paper we are interested in highlighting some numerical issues related to this problem. The proposed procedure is mainly divided into three parts: the test of the lognomality of the risk asset, the estimation of the volatility of the underlying and, finally, the determination of the price. As concerns the first point, we propose the adoption of the the Shapiro-Wilk test, in the second one we suggest to estimate the volatility by the sample standard deviation and in the third point we apply the Black-Scholes formula and we introduce an approximation for a Normal function value by means of a quadrature formula.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical Remarks on the Estimation of the Option Price\",\"authors\":\"S. Cuomo, R. Campagna, V. D. Somma, G. Severino\",\"doi\":\"10.1109/SITIS.2016.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computation of the European options price in a Black-Scholes market, characterized by the presence of no arbitrage condition, is an important applicative problem. In this paper we are interested in highlighting some numerical issues related to this problem. The proposed procedure is mainly divided into three parts: the test of the lognomality of the risk asset, the estimation of the volatility of the underlying and, finally, the determination of the price. As concerns the first point, we propose the adoption of the the Shapiro-Wilk test, in the second one we suggest to estimate the volatility by the sample standard deviation and in the third point we apply the Black-Scholes formula and we introduce an approximation for a Normal function value by means of a quadrature formula.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

以不存在套利条件为特征的Black-Scholes市场的欧式期权价格计算是一个重要的应用问题。在本文中,我们感兴趣的是强调与此问题有关的一些数值问题。该过程主要分为三个部分:风险资产的对数态检验,标的波动率的估计,最后确定价格。关于第一点,我们建议采用夏皮罗-威尔克检验,在第二点,我们建议通过样本标准差估计波动率,在第三点,我们应用布莱克-斯科尔斯公式,并通过正交公式引入正态函数值的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Remarks on the Estimation of the Option Price
The computation of the European options price in a Black-Scholes market, characterized by the presence of no arbitrage condition, is an important applicative problem. In this paper we are interested in highlighting some numerical issues related to this problem. The proposed procedure is mainly divided into three parts: the test of the lognomality of the risk asset, the estimation of the volatility of the underlying and, finally, the determination of the price. As concerns the first point, we propose the adoption of the the Shapiro-Wilk test, in the second one we suggest to estimate the volatility by the sample standard deviation and in the third point we apply the Black-Scholes formula and we introduce an approximation for a Normal function value by means of a quadrature formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信