C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, Sachin Kumar, M. Pecht
{"title":"基于模型和数据驱动的汽车和电子系统预测","authors":"C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, Sachin Kumar, M. Pecht","doi":"10.1109/COASE.2009.5234108","DOIUrl":null,"url":null,"abstract":"Recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. Concomitantly, there is an increased trend towards the forecasting of system degradation through a prognostic process to fulfill the needs of customers demanding high vehicle availability. Prognosis is viewed as an add-on capability to diagnosis that assesses the current health of a system and predicts its remaining life based on sensed features that capture the gradual degradation in the operation of the vehicle. This paper discusses a hybrid model-based, data-driven and knowledge-based integrated diagnosis and prognosis framework, and applies it to automotive (suspension and battery systems) and on-board electronic systems.","PeriodicalId":386046,"journal":{"name":"2009 IEEE International Conference on Automation Science and Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Model-based and data-driven prognosis of automotive and electronic systems\",\"authors\":\"C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, Sachin Kumar, M. Pecht\",\"doi\":\"10.1109/COASE.2009.5234108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. Concomitantly, there is an increased trend towards the forecasting of system degradation through a prognostic process to fulfill the needs of customers demanding high vehicle availability. Prognosis is viewed as an add-on capability to diagnosis that assesses the current health of a system and predicts its remaining life based on sensed features that capture the gradual degradation in the operation of the vehicle. This paper discusses a hybrid model-based, data-driven and knowledge-based integrated diagnosis and prognosis framework, and applies it to automotive (suspension and battery systems) and on-board electronic systems.\",\"PeriodicalId\":386046,\"journal\":{\"name\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2009.5234108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2009.5234108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-based and data-driven prognosis of automotive and electronic systems
Recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. Concomitantly, there is an increased trend towards the forecasting of system degradation through a prognostic process to fulfill the needs of customers demanding high vehicle availability. Prognosis is viewed as an add-on capability to diagnosis that assesses the current health of a system and predicts its remaining life based on sensed features that capture the gradual degradation in the operation of the vehicle. This paper discusses a hybrid model-based, data-driven and knowledge-based integrated diagnosis and prognosis framework, and applies it to automotive (suspension and battery systems) and on-board electronic systems.