AVEC 2016中OA RVM的阶梯回归、数据选择与性别依赖

Zhaocheng Huang, Brian Stasak, T. Dang, Kalani Wataraka Gamage, P. Le, V. Sethu, J. Epps
{"title":"AVEC 2016中OA RVM的阶梯回归、数据选择与性别依赖","authors":"Zhaocheng Huang, Brian Stasak, T. Dang, Kalani Wataraka Gamage, P. Le, V. Sethu, J. Epps","doi":"10.1145/2988257.2988265","DOIUrl":null,"url":null,"abstract":"Within the field of affective computing, human emotion and disorder/disease recognition have progressively attracted more interest in multimodal analysis. This submission to the Depression Classification and Continuous Emotion Prediction challenges for AVEC2016 investigates both, with a focus on audio subsystems. For depression classification, we investigate token word selection, vocal tract coordination parameters computed from spectral centroid features, and gender-dependent classification systems. Token word selection performed very well on the development set. For emotion prediction, we investigate emotionally salient data selection based on emotion change, an output-associative regression approach based on the probabilistic outputs of relevance vector machine classifiers operating on low-high class pairs (OA RVM-SR), and gender-dependent systems. Experimental results from both the development and test sets show that the RVM-SR method under the OA framework can improve on OA RVM, which performed very well in the AV+EC2015 challenge.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Staircase Regression in OA RVM, Data Selection and Gender Dependency in AVEC 2016\",\"authors\":\"Zhaocheng Huang, Brian Stasak, T. Dang, Kalani Wataraka Gamage, P. Le, V. Sethu, J. Epps\",\"doi\":\"10.1145/2988257.2988265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the field of affective computing, human emotion and disorder/disease recognition have progressively attracted more interest in multimodal analysis. This submission to the Depression Classification and Continuous Emotion Prediction challenges for AVEC2016 investigates both, with a focus on audio subsystems. For depression classification, we investigate token word selection, vocal tract coordination parameters computed from spectral centroid features, and gender-dependent classification systems. Token word selection performed very well on the development set. For emotion prediction, we investigate emotionally salient data selection based on emotion change, an output-associative regression approach based on the probabilistic outputs of relevance vector machine classifiers operating on low-high class pairs (OA RVM-SR), and gender-dependent systems. Experimental results from both the development and test sets show that the RVM-SR method under the OA framework can improve on OA RVM, which performed very well in the AV+EC2015 challenge.\",\"PeriodicalId\":432793,\"journal\":{\"name\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2988257.2988265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在情感计算领域,人类情感和障碍/疾病识别逐渐引起了对多模态分析的更多兴趣。这份提交给AVEC2016抑郁症分类和持续情绪预测挑战的报告对两者进行了研究,重点是音频子系统。对于抑郁症分类,我们研究了标记词选择、从谱质心特征计算的声道协调参数和性别依赖的分类系统。令牌词选择在开发集上表现得非常好。在情绪预测方面,我们研究了基于情绪变化的情绪显著性数据选择、基于在高低等级对(OA RVM-SR)上运行的相关向量机分类器的概率输出的输出关联回归方法以及性别依赖系统。开发集和测试集的实验结果表明,OA框架下的RVM- sr方法可以改进OA RVM,在AV+EC2015挑战中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Staircase Regression in OA RVM, Data Selection and Gender Dependency in AVEC 2016
Within the field of affective computing, human emotion and disorder/disease recognition have progressively attracted more interest in multimodal analysis. This submission to the Depression Classification and Continuous Emotion Prediction challenges for AVEC2016 investigates both, with a focus on audio subsystems. For depression classification, we investigate token word selection, vocal tract coordination parameters computed from spectral centroid features, and gender-dependent classification systems. Token word selection performed very well on the development set. For emotion prediction, we investigate emotionally salient data selection based on emotion change, an output-associative regression approach based on the probabilistic outputs of relevance vector machine classifiers operating on low-high class pairs (OA RVM-SR), and gender-dependent systems. Experimental results from both the development and test sets show that the RVM-SR method under the OA framework can improve on OA RVM, which performed very well in the AV+EC2015 challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信