气动仿人机器人子Affetto参数化动态动作原语的技能记忆

J. Queißer, B. Hammer, H. Ishihara, M. Asada, Jochen J. Steil
{"title":"气动仿人机器人子Affetto参数化动态动作原语的技能记忆","authors":"J. Queißer, B. Hammer, H. Ishihara, M. Asada, Jochen J. Steil","doi":"10.1109/DEVLRN.2018.8761040","DOIUrl":null,"url":null,"abstract":"In this work, we propose an extension of parameterized skills to achieve generalization of forward control signals for action primitives that result in an enhanced control quality of complex robotic systems. We argue to shift the complexity of learning the full dynamics of the robot to a lower dimensional task related learning problem. Due to generalization over task variability, online learning for complex robots as well as complex scenarios becomes feasible. We perform an experimental evaluation of the generalization capabilities of the proposed online learning system through simulation of a compliant 2DOF arm. Scalability to a complex robotic system is demonstrated on the pneumatically driven humanoid robot Affetto including 6DOF.","PeriodicalId":236346,"journal":{"name":"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Skill Memories for Parameterized Dynamic Action Primitives on the Pneumatically Driven Humanoid Robot Child Affetto\",\"authors\":\"J. Queißer, B. Hammer, H. Ishihara, M. Asada, Jochen J. Steil\",\"doi\":\"10.1109/DEVLRN.2018.8761040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose an extension of parameterized skills to achieve generalization of forward control signals for action primitives that result in an enhanced control quality of complex robotic systems. We argue to shift the complexity of learning the full dynamics of the robot to a lower dimensional task related learning problem. Due to generalization over task variability, online learning for complex robots as well as complex scenarios becomes feasible. We perform an experimental evaluation of the generalization capabilities of the proposed online learning system through simulation of a compliant 2DOF arm. Scalability to a complex robotic system is demonstrated on the pneumatically driven humanoid robot Affetto including 6DOF.\",\"PeriodicalId\":236346,\"journal\":{\"name\":\"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2018.8761040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2018.8761040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们提出了参数化技能的扩展,以实现动作原语的前向控制信号的泛化,从而提高复杂机器人系统的控制质量。我们主张将学习机器人完整动力学的复杂性转移到与低维任务相关的学习问题上。由于对任务可变性的泛化,复杂机器人和复杂场景的在线学习变得可行。我们通过仿真一个柔性的2自由度手臂,对所提出的在线学习系统的泛化能力进行了实验评估。以气动驱动人形机器人Affetto为例,论证了其在复杂机器人系统中的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skill Memories for Parameterized Dynamic Action Primitives on the Pneumatically Driven Humanoid Robot Child Affetto
In this work, we propose an extension of parameterized skills to achieve generalization of forward control signals for action primitives that result in an enhanced control quality of complex robotic systems. We argue to shift the complexity of learning the full dynamics of the robot to a lower dimensional task related learning problem. Due to generalization over task variability, online learning for complex robots as well as complex scenarios becomes feasible. We perform an experimental evaluation of the generalization capabilities of the proposed online learning system through simulation of a compliant 2DOF arm. Scalability to a complex robotic system is demonstrated on the pneumatically driven humanoid robot Affetto including 6DOF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信