Nathan C. Freitas, R. M. M. Gouveia, Gabriel A. de Albuquerque Júnior, M. D. C. M. Batista, Rodrigo Lins Rodrigues
{"title":"高等教育财务异常值检测与处理的实现数学计算方法","authors":"Nathan C. Freitas, R. M. M. Gouveia, Gabriel A. de Albuquerque Júnior, M. D. C. M. Batista, Rodrigo Lins Rodrigues","doi":"10.5753/eniac.2022.227587","DOIUrl":null,"url":null,"abstract":"O Censo da Educação Superior ocorre anualmente, coletando dados de Instituições de Ensino Superior (IES) no Brasil. Diferentes fatores podem levar a anomalias ou outliers em alguns destes dados coletados. Este trabalho propõe um método matemático-computacional para detectar e tratar valores financeiros atípicos das IES. Para tanto, adota-se as análises univariadas e bivariadas dos dados. Foram analisados dados de despesas e receitas das IES do Censo de 2016 a 2019. Esta análise revelou que 204 de 2.224 IES, aproximadamente 10%, reportaram algum dado atípico.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A implementation mathematical-computational method for the detection and treatment of financial outliers in higher education\",\"authors\":\"Nathan C. Freitas, R. M. M. Gouveia, Gabriel A. de Albuquerque Júnior, M. D. C. M. Batista, Rodrigo Lins Rodrigues\",\"doi\":\"10.5753/eniac.2022.227587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O Censo da Educação Superior ocorre anualmente, coletando dados de Instituições de Ensino Superior (IES) no Brasil. Diferentes fatores podem levar a anomalias ou outliers em alguns destes dados coletados. Este trabalho propõe um método matemático-computacional para detectar e tratar valores financeiros atípicos das IES. Para tanto, adota-se as análises univariadas e bivariadas dos dados. Foram analisados dados de despesas e receitas das IES do Censo de 2016 a 2019. Esta análise revelou que 204 de 2.224 IES, aproximadamente 10%, reportaram algum dado atípico.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A implementation mathematical-computational method for the detection and treatment of financial outliers in higher education
O Censo da Educação Superior ocorre anualmente, coletando dados de Instituições de Ensino Superior (IES) no Brasil. Diferentes fatores podem levar a anomalias ou outliers em alguns destes dados coletados. Este trabalho propõe um método matemático-computacional para detectar e tratar valores financeiros atípicos das IES. Para tanto, adota-se as análises univariadas e bivariadas dos dados. Foram analisados dados de despesas e receitas das IES do Censo de 2016 a 2019. Esta análise revelou que 204 de 2.224 IES, aproximadamente 10%, reportaram algum dado atípico.